K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f: \(3ab-6a+b-2\)

\(=3a\left(b-2\right)+\left(b-2\right)\)

\(=\left(b-2\right)\left(3a+1\right)\)

6 tháng 6 2017

Bài giải:

a) (x2 – 2x+ 1)(x – 1)

= x2 . x + x2.(-1) + (-2x). x + (-2x). (-1) + 1 . x + 1 . (-1)

= x3 - x2 - 2x2 + 2x + x – 1

= x3 - 3x2 + 3x – 1

b) (x3 – 2x2 + x -1)(5 – x)

= x3 . 5 + x3 . (-x) + (-2 x2) . 5 + (-2x2)(-x) + x . 5 + x(-x) + (-1) . 5 + (-1) . (-x)

= 5 x3 – x4 – 10x2 + 2x3 +5x – x2 – 5 + x

= - x4 + 7x3 – 11x2+ 6x - 5.

Suy ra kết quả của phép nhan:

(x3 – 2x2 + x -1)(x - 5) = (x3 – 2x2 + x -1)(-(5 - x))

= - (x3 – 2x2 + x -1)(5 – x)

= - (- x4 + 7x3 – 11x2+ 6x -5)

= x4 - 7x3 + 11x2- 6x + 5

7 tháng 6 2017

Cảm ơn bạn!hihi

13 tháng 9 2017

Cả hai baif hộ mik nhé

Bài 3: 

Gọi x(m) là chiều rộng của mảnh đất(Điều kiện: x>0)

Chiều dài của mảnh đất là: x+5(m)

Theo đề, ta có phương trình:

2x+5=25

\(\Leftrightarrow2x=20\)

hay x=10(thỏa ĐK)

Vậy: Diện tích của mảnh đất là 150m2

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 1:

Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h) 

 

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 2:

Đổi 1 giờ 48 phút = 1,8 giờ

Độ dài quãng đường AB: $1,8\times 25=45$ (km) 

Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h) 

Cano ngược dòng từ B về A hết:

$45:20=2,25$ giờ = 2 giờ 15 phút.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 1:

a.

$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$

$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$

b.

$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$

$=(x-1)^2(x+1)^2$

c.

$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$

$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$

d.

$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$

$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 2:

a. $(3x+4)^2-(3x-1)(3x+1)=49$

$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$

$\Leftrightarrow (3x+4)^2-(3x)^2=48$

$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$

$\Leftrightarrow 4(6x+4)=48$

$\Leftrightarrow 6x+4=12$

$\Leftrightarrow 6x=8$

$\Leftrightarrow x=\frac{4}{3}$

b. $x^2-4x+4=9(x-2)$

$\Leftrightarrow (x-2)^2=9(x-2)$

$\Leftrightarrow (x-2)(x-2-9)=0$

$\Leftrightarrow (x-2)(x-11)=0$

$\Leftrightarrow x-2=0$ hoặc $x-11=0$

$\Leftrightarrow x=2$ hoặc $x=11$

c.

$x^2-25=3x-15$

$\Leftrightarrow (x-5)(x+5)=3(x-5)$

$\Leftrightarrow (x-5)(x+5-3)=0$

$\Leftrightarrow (x-5)(x+2)=0$

$\Leftrightarrow x-5=0$ hoặc $x+2=0$

$\Leftrightarrow x=5$ hoặc $x=-2$

NM
2 tháng 11 2021

ta có :

undefined

2 tháng 7 2017

có thì có thật , nhưng cho bạn kiểu j

2 tháng 7 2017

sách hay cái zì bạn?nếu đề thi hay bài tập bạn chụp rùi gửi mail(lethihuong34567890@gmail.com) cho mk đc hơmhihi? còn nếu sách thì chỉ cần chụp bìa dc gùihihi

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)