K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

7 tháng 5 2017

Từ đề bài ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)

Lấy trên + dưới ta được

\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)

\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)

\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)

\(\Leftrightarrow x^2+y^2+z^2\le11\)

7 tháng 5 2017

Bài này Karamata là vừa :D

Giả sử \(a\ge b\ge c\)

Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\)\((-1,-1,3)\succ(a,b,c)\)

Theo Karamata's inequality ta có:

\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)

NV
15 tháng 5 2020

\(A\ge\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{8\left(x+y+z\right)}+\frac{9}{8\left(x+y+z\right)}+\frac{27}{4\left(x+y+z\right)}\)

\(A\ge3\sqrt[3]{\frac{81\left(x+y+z\right)^2}{3.64\left(x+y+z\right)\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{27}{4}\)

\(A_{min}=\frac{27}{4}\) khi \(x=y=z=\frac{1}{2}\)

6 tháng 7 2016

  Áp dụng bất đẳng thức bunhiacopxki :

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2.\)

<=> \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)(đpcm)

Dấu = khi x=y=z