K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì 1/2<>1/3

nên hệ luôn có nghiệm duy nhất

x+y=2 và 2x+3y=m

=>2x+2y=4 và 2x+3y=m

=>-y=4-m và x+y=2

=>y=m-4 và x=2-y=2-m+4=6-m

x+2y<5

=>6-m+2m-8<5

=>m-2<5

=>m<7

=>Có 6 số nguyên dương thỏa mãn

20 tháng 5 2020

\(\left\{{}\begin{matrix}x_0-my_0=2-4m\\mx_0+y_0=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(y_0-4\right)\left(3-x_0\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(y_0-4\right)\left(3-x_0\right)\end{matrix}\right.\)

\(\Rightarrow\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

5 tháng 3 2017

Lấy pt 1 cộng vế với vế của pt 2 ta được

\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)

từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)

Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)

Vậy ..........

4 tháng 3 2017

m=5

3 tháng 5 2020

\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)x=3\\2x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\\frac{6}{m+2}-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\y=\frac{10+2m}{m+2}\end{matrix}\right.\)

\(\Rightarrow x+y=\frac{3}{m+2}+\frac{10+2m}{m+2}=\frac{13+2m}{m+2}\)

\(\Leftrightarrow\frac{13+2m}{m+2}=1\Leftrightarrow13+2m=m+2\)

\(\Leftrightarrow m=-11\)

30 tháng 5 2019

Để hệ có nghiệm duy nhất thì \(\frac{2}{-5}\ne\frac{3}{1}\)

\(\Leftrightarrow-15\ne2\) ( luôn đúng)

=> hệ luôn có nghiệm duy nhất

Với mọi m, hệ luôn có nghiệm duy nhất nên ta có:

\(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\-15x+3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\-5x+y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{17}\\y=\frac{5m-2}{17}\end{matrix}\right.\)

Để x > 0, y>0 thì \(\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+3>0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\)

Kết hợp 2 đk, ta được \(m>\frac{2}{5}\)

=.= hk tốt!!

17 tháng 2 2021

=( U GAY

30 tháng 1 2018

\(\left\{{}\begin{matrix}y=5-mx\\2x-5+mx=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-mx\\x\left(m+2\right)=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-mx\\x=\dfrac{3}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-m.\dfrac{3}{m+2}\\x=\dfrac{3}{m+2}\end{matrix}\right.\)

Ta co : xo+yo=1

=> 5-\(\dfrac{3m}{m+2}+\dfrac{3}{m+2}=1\)

=> \(\dfrac{5.\left(m+2\right)-3m+3}{m+2}=1\)

=> 5m+10-3m+3=m+2

=> 2m-m=2-13

=> m=-11

31 tháng 1 2018

\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)

từ (1) ta có y=5-mx(3)

thế vào (2) ta có 2x-5+mx=-2\(\Leftrightarrow\) (2+m)x=3\(\Leftrightarrow\)x=\(\dfrac{3}{2+m}\)(4)

thế (4) vào (3) ta có

y=5-m\(\dfrac{3}{2+m}\)=\(\dfrac{10+2m}{2+m}\)

vậy hệ có nghiệm duy nhất là(\(\dfrac{3}{2+m}\);\(\dfrac{10+2m}{2+m}\))

mà x+y=1

\(\Rightarrow\)\(\dfrac{3}{2+m}+\dfrac{10+2m}{2+m}=1\)\(\Leftrightarrow\)m=-11

vậy m=-11

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2) Bài 2: Cho 2 phương trình: \(x+y=2\) và \(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình Bài 3: Tìm các nghiệm nguyên của 2 phương trình: a) \(4x-3y=11\) b) \(5x+3y=2\) Bài 4: Giải và biện luận hệ phương trình: a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b)...
Đọc tiếp

Bài 1: Xác định một phương trình bậc nhất hai ẩn số biết hai nghiệm là (3;5) và (0;-2)

Bài 2: Cho 2 phương trình: \(x+y=2\)\(x-2y=-1\). Tìm một cặp số (x;y) là nghiệm chung của 2 phương trình

Bài 3: Tìm các nghiệm nguyên của 2 phương trình:

a) \(4x-3y=11\)

b) \(5x+3y=2\)

Bài 4: Giải và biện luận hệ phương trình:

a) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}mx+y=m\\x+my=1\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}ax+y=b\\x-y=2\end{matrix}\right.\)

Bài 5: a) Tìm m để hệ pt sau vô nghiệm : \(\left\{{}\begin{matrix}x+2y=3\\mx-4y=-5\end{matrix}\right.\)

b) Tìm m để hệ pt sau có nghiệm duy nhất : \(\left\{{}\begin{matrix}\left(m-2\right)x+y=3\\x+y=1\end{matrix}\right.\)

Bài 6: Tìm m để ba đường thẳng sau đồng quy:

\(\left(d_1\right)\): \(2x+3y=7\) \(\left(d_2\right)\): \(x-y=6\) \(\left(d_3\right)\): \(3x+my=13\)

Bài 7: Tìm các gtri của m để hệ pt : \(\left\{{}\begin{matrix}3x-y=2-m\\x+2y=m+1\end{matrix}\right.\)có nghiệm \(\left(x_0;y_0\right)\) và sao cho \(x_0^2+y_0^2\) đạt GTNN

Bài 8: Giải hệ pt : \(\left\{{}\begin{matrix}m\left|x\right|-y=m\\\left|x\right|+my=1\end{matrix}\right.\)

Bài 9: a) Tìm m để hệ pt \(\left\{{}\begin{matrix}2x-my=-3\\mx+3y=4\end{matrix}\right.\)có nghiệm (x;y) và x<0; y>0

b) Tìm m để hệ pt \(\left\{{}\begin{matrix}3x-6y=1\\5x-my=2\end{matrix}\right.\) có nghiệm (x;y) và x<0; y<0

Bài 10: Hai xe cùng khởi hành một lúc ở 2 tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ, nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Bài 11: Hai loại quặng chứa 75% và 50% sắt. Tính khối lượng của mỗi loại quặng đem trộn để được 25 tấn quặng có chứa 66% sắt.

Mọi người giúp em giải chi tiết các bài này gấp với ạ!!!!!!!

0