Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
c/ Ta có: (x2 + 5x + 4).(9x2 + 30x + 16) = 4x2
=> (x + 1).(x + 4).(3x + 2).(3x + 8) = 4x2
=> (x + 1).(3x + 8).(x + 4).(3x + 2) = 4x2
=> (3x2 + 11x + 8).(3x2 + 14x + 8) = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8 - \(\frac{3}{2}\)x) . (3x2 + \(\frac{25}{2}\)x + 8 + \(\frac{3}{2}\)x) = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8)2 - \(\frac{9}{4}\)x2 = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8)2 = \(\frac{25}{4}\)x2
=> 3x2 + \(\frac{25}{2}\)x + 8 = \(\frac{5}{2}\)x hoặc 3x2 + \(\frac{25}{2}\)x + 8 = \(-\frac{5}{2}\)x
+) Với \(3x^2+\frac{25}{2}x+8=\frac{5}{2}x\Rightarrow3x^2+10x+8=0\) . Tới đây bạn tự giải
+) Với \(3x^2+\frac{25}{2}x+8=-\frac{5}{2}x\Rightarrow3x^2+15x+8=0\). Tới đây bạn tự giải
d/ (x2 + x + 1)2 = 3(x4 + x2 + 1) => (x2 + x + 1).(x2 + x + 1) = 3.(x4 + x2 + 1)
Chia 2 vế cho x2 ta được: \(\left(x+\frac{1}{x}+1\right).\left(x+\frac{1}{x}+1\right)=3.\left(x^2+\frac{1}{x^2}+1\right)\)
Đặt \(a=x+\frac{1}{x}\). Có: \(\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\). Mặt khác: \(x^2+\frac{1}{x^2}=a^2-2\)
Ta có pt: (a + 1).(a + 1) = 3.(a2 - 2 + 1) => a2 + 2a + 1 = 3a2 - 3 => 2a2 - 2a - 4 = 0 => a = 2 (nhận) hoặc a = -1(loại)
+) Với a = 2 \(\Rightarrow x+\frac{1}{x}=2\). Tới đây bạn tự giải
e/ 6x4 + 25x3 + 12x2 - 25x + 6 = 0
Vì x = 0 k là nghiệm của pt nên pt đã cho \(\Leftrightarrow6.\left(x^2+\frac{1}{x^2}\right)+25.\left(x-\frac{1}{x}\right)+12=0\)
Đặt \(a=x-\frac{1}{x}\Rightarrow x^2+\frac{1}{x^2}=a^2+2\). Ta có phương trình: 6(a2 + 2) + 25a + 12 = 0
=> 6a2 + 12 + 25a + 12 = 0 => 6a2 + 25a + 24 = 0 => a = -3/2 hoặc a = -8/3
+) Với a = -3/2 \(\Rightarrow x-\frac{1}{x}=-\frac{3}{2}\) .Tới đây bạn tự giải
+) Với a = -8/3 \(\Rightarrow x-\frac{1}{x}=-\frac{8}{3}\). Tới đây bạn tự giải
Bài 1:
b: \(x^3-4x^2+7x-6=0\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
=>x-2=0
hay x=2
c: \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x+2+7x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
=>(x+1)(x+2)(2x+1)=0
hay \(x\in\left\{-1;-2;-\dfrac{1}{2}\right\}\)
d: \(2x^3-9x+2=0\)
\(\Leftrightarrow2x^3-4x^2+4x^2-8x-x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+1-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1+\dfrac{\sqrt{6}}{2}\right)\left(x+1-\dfrac{\sqrt{6}}{2}\right)=0\)
hay \(x\in\left\{2;-1-\dfrac{\sqrt{6}}{2};-1+\dfrac{\sqrt{6}}{2}\right\}\)
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
a) x^4 - 5x^2 + 4 = 0
<=> (x^2 - 1)(x^2 - 4) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0
<=> x = +-1 hoặc x = +-2
b) x^4 - 10x^2 + 9 = 0
<=> (x^2 - 1)(x^2 - 9) = 0
<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0
<=> x = +-1 hoặc x = +-3
c) x^3 + 6x^2 + 11x + 6 = 0
<=> (x^2 + 5x + 6)(x + 1) = 0
<=> (x + 2)(x + 3)(x + 1) = 0
<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
<=> x = -2 hoặc x = -3 hoặc x = -1
d) x^3 + 9x^2 + 26x + 24 = 0
<=> (x^2 + 7x + 12)(x + 2) = 0
<=> (x + 3)(x + 4)(x + 2) = 0
<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0
<=> x = -3 hoặc x = -4 hoặc x = -2
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) \(x^3-16x=0\)
<=> \(x\left(x^2-16\right)=0\)
<=> \(x\left(x-4\right)\left(x+4\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-4;4\end{cases}}\)
b) \(2x^3-50x=0\)
<=> \(2x\left(x^2-25\right)=0\)
<=> \(2x\left(x-5\right)\left(x+5\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=5;-5\end{cases}}\)
c) \(x^3-4x^2-9x+36=0\)
<=> \(\left(x^3-4x^2\right)-\left(9x-36\right)=0\)
<=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)
<=> \(\left(x-4\right)\left(x^2-9\right)=0\)
<=> \(\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
<=> \(\orbr{\begin{cases}x=-3;3\\x=4\end{cases}}\)
a)\(x^3-16x=0\)
\(x\left(x^2-4^2\right)=0\)
\(x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
x + 4 =0 x = -4
b)Giống ở câu a
c)\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)+9\left(x-4\right)=0\)
\(\left(x^2+9\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x^2+9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\xkoTM\end{cases}}\)
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
a) \(x^2+7x+10=0\)
\(\Leftrightarrow x^2+2x+5x+10=0\)
\(\Leftrightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-5\end{cases}}\)
Vậy....
b) \(x^3=25x\)
\(\Leftrightarrow x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\left\{\pm5\right\}\end{cases}}\)
Vậy....