K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^4-2x^3-6x^2+16x-8=0\)

\(\Leftrightarrow x^4-2x^3-6x^2+12x+4x-8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)+4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+2x-2\right)\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+2x-2\right)=0\)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

14 tháng 1 2020

a) \(x^2-6x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

17 tháng 7 2016

   (ĐK : x>= 3/2) 

nhận 2 vế của pt với \(\sqrt{2}tađược\)

\(\sqrt{2.\left(2x-2\right)}-\sqrt{2.\left(6x-9\right)}=\sqrt{2}.\left(16x^2-48x+35\right)\)

<=> \(\left(\sqrt{4x-4}-\sqrt{3}\right)-\left(\sqrt{12x-18}-\sqrt{3}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)

<=> \(\left(\frac{4x-7}{\sqrt{4x-4}+\sqrt{3}}\right)-\left(\frac{12x-21}{\sqrt{12x-18}+\sqrt{3}}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)

<=>\(\left(4x-7\right).\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\) 

<=> (4x-7) .g(x) = 0 

<=> x = 7/4(tm) hoặc g(x)= 0 

+) với g(x) = 0  <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\) <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)-\sqrt{2}\right)=0\)

<=>\(\left(\frac{1-\sqrt{2}.\sqrt{4x-4}-\sqrt{2}.\sqrt{3}}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)\right)=0\)  vô nghiện vì VT < 0 với mọi x >= 2/3 ...

VẬY X = 7/4  ... nếu đúng thì like nhé !!!

\(x^4-8x^2+16=8x^2-16x+8\)

\(\Leftrightarrow\left(x^2-4\right)^2=8\left(x-1\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=2\sqrt{2}\left(x-1\right)\\4-x^2=2\sqrt{2}\left(x-1\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2\sqrt{2}x-4+2\sqrt{2}=0\\x^2+2\sqrt{2}x-2\sqrt{2}-4=0\end{cases}}\)

Đến đây dễ rồi nhé :P

14 tháng 4 2017

a) Ta có:  Δ = 196 > 0     

Phương trình có 2 nghiệm  x 1 = 3 ,   x 2 = 1 5

b) Đặt  t = x 2 ,   t ≥ 0 , phương trình trở thành  t 2 + 9 t − 10 = 0

Giải ra được t=1 (nhận); t= -10 (loại)

Khi t=1, ta có  x 2 = 1 ⇔ x = ± 1 .

c)  3 x − 2 y = 10 x + 3 y = 7 ⇔ 3 x − 2 y = 10         ( 1 ) 3 x + 9 y = 21       ( 2 )

(1) – (2) từng vế ta được: y=1

Thay y= 1 vào (1) ta được x= 4

Vậy hệ phương trình có nghiệm duy nhất là x= 4; y= 1.

14 tháng 1 2020

không chắc nhé 

a) \(x^2-6x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+2\sqrt{3}}{2}\\x=\frac{6-2\sqrt{3}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)