K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Đề bạn sai câu b/

6 tháng 9 2016

thế c lm hộ t câu a vs

 

giải giúp mk vs mk sắp thi rùi!!! 1. a. Cho P=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{xz}+3\sqrt{z}+3}\) và xyz =9. Tính \(\sqrt{10P-1}\) b. Cho x,y,z >0 thỏa mãn: x+y+z + \(\sqrt{xyz}\) =4 . Tính B= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\left(4-y\right)\right)}\) 2. a. giải phương trình \(\dfrac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\) b....
Đọc tiếp

giải giúp mk vs mk sắp thi rùi!!!

1. a. Cho P=\(\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+3}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{3\sqrt{z}}{\sqrt{xz}+3\sqrt{z}+3}\) và xyz =9. Tính \(\sqrt{10P-1}\)

b. Cho x,y,z >0 thỏa mãn: x+y+z + \(\sqrt{xyz}\) =4 . Tính B= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\left(4-y\right)\right)}\)

2. a. giải phương trình \(\dfrac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\)

b. \(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)

3. a.Tìm tất cae các nghiệm nguyên của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)

b. CMR: \(a^3_1+a^3_2+a^3_3+....+a^3_n\) chia hết cho 3 biết \(a_1,a_2,a_3,...,a_n\) là các chữ số của \(2019^{2018}\)

4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.

a. MH =2OQ B. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM c. ME.FH +MF .HE = \(R^2\sqrt{2}\) biết NP = \(R\sqrt{2}\) 5. Cho a,b,c dương thỏa mãn \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\) . Tìm GTNN của P= \(\dfrac{ab^2}{a+b}+\dfrac{bc^2}{b+c}+\dfrac{ca^2}{c+a}\)
0
NV
17 tháng 5 2019

Câu 1: Đề bài sai, với điều kiện đề bài đã cho thì Q vẫn nguyên tại \(x=0\), đề bài đúng phải là \(\forall x>0\) thì Q không nguyên (ko hiểu sao lại có điều kiện \(x\ne4\) , cái này hoàn toàn ko ảnh hưởng gì tới bài toán)

\(A=Q^2=\frac{x+4\sqrt{x}+4}{x+4}\Leftrightarrow Ax+4A=x+4\sqrt{x}+4\)

\(\Leftrightarrow\left(A-1\right)x-4\sqrt{x}+4A-4=0\)

\(\Delta'=4-\left(4A-4\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow=-A^2+2A\ge0\Rightarrow0\le A\le2\Rightarrow A\le2\)

\(\Rightarrow Q\le\sqrt{2}< 2\)

Mặt khác ta có \(\sqrt{x}+2=\sqrt{x}+\sqrt{4}>\sqrt{x+4}\)

\(\Rightarrow Q=\frac{\sqrt{x}+2}{\sqrt{x+4}}>1\) \(\Rightarrow1< Q< 2\Rightarrow Q\) không thể nhận giá trị nguyên

NV
17 tháng 5 2019

Câu 2: ĐKXĐ: \(x\ge-2\)

a/ \(\Leftrightarrow4\left(x^2+2x+3\right)+3\left(x+2\right)=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\) ta được:

\(3a^2-8ab+4b^2=0\Leftrightarrow\left(a-2b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\3a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2+2x+3}\\3\sqrt{x+2}=2\sqrt{x^2+2x+3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2+7x+10=0\left(vn\right)\\4x^2-x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1\pm\sqrt{97}}{8}\)

b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge7\\-5\le x\le-2\end{matrix}\right.\)

\(\Leftrightarrow3x^2-11x-22=7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}\)

\(\Leftrightarrow3\left(x^2-5x-14\right)+4\left(x+5\right)-7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-5x-14}=a\ge0\\\sqrt{x+5}=b\ge0\end{matrix}\right.\) ta được:

\(3a^2-7ab+4b^2=0\Leftrightarrow\left(a-b\right)\left(3a-4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-5x-14}=\sqrt{x+5}\\3\sqrt{x^2-5x-14}=4\sqrt{x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-19=0\\9x^2-61x-206=0\end{matrix}\right.\) \(\Rightarrow x=...\)