K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

a)Đk:\(sinx\ne1\)

Pt\(\Leftrightarrow sin^2x+sinx=-2\left(sinx-1\right)\)

\(\Leftrightarrow sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{-3+\sqrt{17}}{2}\left(tm\right)\\sinx=\dfrac{-3-\sqrt{17}}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\\x=\pi-arc.sin\left(\dfrac{-3+\sqrt{17}}{2}\right)+k2\pi\end{matrix}\right.\)(\(k\in Z\))

b)Đk:\(sinx\ne1\)

Pt \(\Leftrightarrow\dfrac{1-2sin^2x+sinx}{sinx-1}+1=0\)

\(\Leftrightarrow\dfrac{-\left(sinx-1\right)\left(2sinx+1\right)}{sinx-1}+1=0\)

\(\Leftrightarrow-\left(2sinx+1\right)+1=0\)

\(\Leftrightarrow sinx=0\) (tm)

\(\Leftrightarrow x=k\pi,k\in Z\)

Vậy...

NV
31 tháng 7 2020

d/

\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)

\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)

\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
6 tháng 10 2020

a.

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
6 tháng 10 2020

b.

\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)

\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

14 tháng 8 2017

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

14 tháng 8 2017

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

19 tháng 9 2017

hộ vs ae ơi

NV
18 tháng 8 2020

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)

\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)

\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(2tan^2x+3+4tanx-1-tan^2x=0\)

\(\Leftrightarrow tan^2x+4tanx+2=0\)

\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)

\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)

NV
18 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)

Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

20 tháng 8 2018

a.\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}=1\left(1\right)\)

ĐKXĐ: sin2x≠\(\dfrac{\sqrt{3}}{2}\)

(1) ⇔ sin2x + cosx - \(\sqrt{3}\) ( cos2x + sinx) = 2sin2x - \(\sqrt{3}\)

⇔cosx - \(\sqrt{3}\) sinx = \(\sqrt{3}\) cos2x + sin2x +\(\sqrt{3}\)

\(\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x+\dfrac{\Pi}{3}\right)-sin\dfrac{\Pi}{3}\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2cos\left(x+\dfrac{\Pi}{3}\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)=2sin\left(\dfrac{\Pi}{6}-x\right)sinx\)

\(sin\left(\dfrac{\Pi}{6}-x\right)\left(2sinx-1\right)=0\)

Đến đây tự giải tiếp nha nhớ đối chiếu đk.

20 tháng 8 2018

b.\(\left(2cosx-1\right)cotx=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\left(1\right)\)

ĐKXĐ: sinx≠0 và cosx≠1

(1)⇔\(\left(2cosx-1\right)\dfrac{cosx}{sinx}=\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)

⇔cosx(2cosx-1)(cosx-1) = 3(cosx-1) + 2sin2x

⇔2cos3x - cos2x - 2cosx +1 = 0

⇔ (cosx-1)(cosx+1)(2cosx-1)=0