Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
a) b) c) bạn bình phương 2 vế
d) pt <=>3-x=x+3+2.căn(x+2)
<=> -2x=2.căn (x+2)
<=>-x=căn (x+2) (x<=0)
<=> x^2=x+2
<=>x=-1 hoặc x=2
Xong bạn xét ĐKXĐ
1)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\\ A=\left|x-1\right|+\left|x+1\right|\\ A=\left|1-x\right|+\left|x+1\right|\ge\left|1-x+x+1\right|=2\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-1\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}1< x\\x< -1\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
\(B=\sqrt{4x^2-12x+9}+\sqrt{4x^2+12x+9}\\ B=\left|2x-3\right|+\left|2x+3\right|\\ B=\left|3-2x\right|+\left|2x+3\right|\ge\left|3-2x+2x+3\right|=6\)
dấu " = " xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3-2x\ge0\\2x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x< 0\\2x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3\ge2x\\2x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}3< 2x\\2x< -3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{3}{2}\ge x\\x\ge-\dfrac{3}{2}\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}\dfrac{3}{2}< x\\x< -\dfrac{3}{2}\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
2)
\(A=\sqrt{x+4}+\sqrt{4-x}\\ A^2=x+4+4-x+2\sqrt{\left(x+4\right)\left(4-x\right)}\\ A^2=4+2\sqrt{16-x^2}\\ vìx^2\ge0nên\\ A^2\le12\\ A\le\sqrt{12}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le16\end{matrix}\right.\Rightarrow0\le x\le4\)
vậy...
\(B=\sqrt{x+6}+\sqrt{6-x}\\ B^2=x+6+6-x+2\sqrt{\left(x+6\right)\left(6-x\right)}\\ B^2=12+2\sqrt{36-x^2}\\ vì\: x^2\ge0nên\\ B^2\le24\\ B\le\sqrt{24}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le36\end{matrix}\right.\Rightarrow0\le x\le6\)
Lời giải :
a) \(\sqrt{x^2\left(x-1\right)^2}=\left|x\right|\cdot\left|x-1\right|=-x\left(1-x\right)=x^2-x\)
b) \(\sqrt{13x}\cdot\sqrt{\frac{52}{x}}=\sqrt{\frac{13x\cdot52}{x}}=\sqrt{676}=26\)
c) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)
d) \(\sqrt{\frac{9+12x+4x^2}{y^2}}=\sqrt{\frac{\left(2x+3\right)^2}{y^2}}=\frac{2x+3}{-y}=\frac{-2x-3}{y}\)
\(\sqrt{x^2\left(x-1\right)^2}=\left|x\left(x-1\right)\right|\)
\(x< 0\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x< 0\end{matrix}\right.\Leftrightarrow x\left(x-1\right)>0\Rightarrow\left|x\left(x-1\right)\right|=x\left(x-1\right)=x^2-x\)
\(b,\sqrt{13x}.\sqrt{\frac{52}{x}}=\sqrt{\frac{13.52.x}{x}}=\sqrt{13.52}=\sqrt{13^2.2^2}=\sqrt{26^2}=26\)
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2