\(\frac{2}{x+2}+\frac{3}{x-2}=\frac{7}{x^2-4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

\(\frac{2}{x+2}+\frac{3}{x-2}=\frac{7}{x^2-4}\)    \(ĐKXĐ:x\ne\pm2\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{x^2-4}+\frac{3\left(x+2\right)}{x^2-4}=\frac{7}{x^2-4}\)

\(\Rightarrow2x-4+3x+6=7\)

\(\Rightarrow5x=5\)

\(\Rightarrow x=1\)   (TM)

3 tháng 5 2018

a  trường hợp 1 : 3x-9=0

3x=0+9=9

x=9/3=3

9 tháng 7 2017

a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)

\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)

\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)

\(\Leftrightarrow108-24x+12=324-27x+27\)

\(\Leftrightarrow3x=231\)

\(\Rightarrow x=77\)

c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)

\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)

\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)

\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)

28 tháng 5 2018

a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9

b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5

c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)

Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12


 

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

13 tháng 7 2017

Ta thấy \(\left(x-3\right)\left(2x+3\right)=2x^2-3x-9.\)

\(\left(1\right)\Leftrightarrow\frac{x}{x-3}-\frac{2x^2+9}{\left(x-3\right)\left(2x+3\right)}=\frac{1}{2x+3}\)

ĐK: \(x\ne3\)và \(x\ne-\frac{3}{2}\)

\(\Rightarrow x\left(2x+3\right)-2x^2-9=x-3\)

\(\Leftrightarrow2x^2+3x-2x^2-9=x-3\Leftrightarrow2x=6\Leftrightarrow x=2\)

Thỏa mãn ĐK

Các trường hợp khác làm tương tự

30 tháng 12 2018

a) \(x^3-2x^2-5x+6=0\)

\(x^3-x^2-x^2+x-6x+6=0\)

\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)

30 tháng 12 2018

\(a,x^3-2x^2-5x+6=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)

Vậy \(x\in\left\{-2;1;3\right\}\)

P/S: (h) là hoặc nhé

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

\(-537x^2+5054x=-541x^2+5092x\)

\(-537x^2+5054x+541x^2-5092x=0\)

\(4x^2-38x=0\)

\(x\left(2x-19\right)=0\)

\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

25 tháng 3 2020

a, x( x - 1) = x ( x + 2)

<=> x2 - x = x2 + 2x

<=>  x2 - x - x2 - 2x = 0

<=> -3x = 0

<=> x = 0

b, tương tự câu a

c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)        

\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)

\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)

=> 6x - 6 = 16 - x + 2

<=> 6x + x = 16 + 2 + 6

<=> 7x = 24

<=> x=\(\frac{24}{7}\)

Các câu còn lại làm tương tự

a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)

\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)

\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)

\(\Leftrightarrow12x-10-8+2x=0\)

\(\Leftrightarrow10x-18=0\)

\(\Leftrightarrow10x=18\)

hay \(x=\frac{9}{5}\)

Vậy: \(x=\frac{9}{5}\)

b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)

\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)

\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)

\(\Leftrightarrow42-9x-2x+14=0\)

\(\Leftrightarrow56-11x=0\)

\(\Leftrightarrow11x=56\)

hay \(x=\frac{56}{11}\)

Vậy: \(x=\frac{56}{11}\)

c) ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)

\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow6-x+2x-6=-5x-15\)

\(\Leftrightarrow x+5x+15=0\)

\(\Leftrightarrow6x=-15\)

hay \(x=\frac{-5}{2}\)(tm)

Vậy: \(x=\frac{-5}{2}\)

d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)

e) ĐKXĐ: x∉{4;-4}

Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)

\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)

\(\Leftrightarrow8x+10-4x+16=0\)

\(\Leftrightarrow4x+26=0\)

\(\Leftrightarrow4x=-26\)

hay \(x=\frac{-13}{2}\)(tm)

Vậy: \(x=\frac{-13}{2}\)