Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
Đang rảnh, buồn ngủ nên giải cho tỉnh táo :D
Ta nhận thấy x=0 không phải là nghiệm của phương trình, vậy ta chia cả 2 vế của phương trình cho x2 khác 0, ta được:
\(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\dfrac{1}{x}\right)+5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=y\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
Ta được: \(6\left(y^2-2\right)+5y-38=0\)
Do đó: y1=2,5;y2=-10/3
Với y=2,5\(\Rightarrow x+\dfrac{1}{x}=2,5\Rightarrow x_1=2;x_2=0,5\)
Với y=-10/3
\(\Rightarrow x+\dfrac{1}{x}=-\dfrac{10}{3}\Rightarrow x_3=-\dfrac{1}{3};x_4=-3\)
Vậy: \(S=\left\{2;0,5;-\dfrac{1}{3};-3\right\}\)
Bài a tự giải
Bài b thì biến đổi xong rồi đặt ẩn phụ \(y=x+\dfrac{1}{x}\)
Bài c:
Đặt x-1=y
Phương trình trở thành: \(\left(y+2\right)^4+\left(y-2\right)^4=82\)
Rút gọn ta được: \(2y^4+48y^2-50=0\)
Đặt y2=z ( \(z\ge0\) )
Phương trình này cho z1=1, z2=-25(Loại)
\(z=1\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(\Rightarrow x_1=2;x_2=0\)
\(6x^4-5x^3-38x^2-5x+6=0\)
\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)
\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)
\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)
<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)
<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2
c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)
<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)
Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
a) 2x3 - x2 - 8x + 4 = 0
x2.(2x - 1) - 4.(2x - 1) = 0
(x2 - 4)(2x - 1) = 0
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)
Với x2 = 4
=> x = 2 hoặc x = -2
=> x = {-2 ; 2 ; \(\frac{1}{2}\))
\(1.x^4+6x^3+11x^2+6x+1\)
\(=x^4+6x^3+9x^2+2x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+2x^2+6x\)
\(=\left(x^2\right)^2+\left(3x\right)^2+1^2+2.x^2.3x+2.x^2.1+2.3x.1\)
\(=\left(x^2+3x+1\right)^2\)
\(2,6x^4+5x^3-38x^2+5x+6\)
\(=6x^4+6x^3+2x^3-3x^3-36x^2+2x^2-3x^2-x^2-12x+18x-x+6\)
\(=\left(6x^4+2x^3\right)+\left(6x^3+2x^2\right)-\left(3x^3+x^2\right)-\left(36x^2+12x\right)+\left(18x+6\right)-\left(3x^2+x\right)\)
\(=2x^3\left(3x+1\right)+2x^2\left(3x+1\right)-x^2\left(3x+1\right)-12x\left(3x+1\right)+6\left(3x+1\right)-x\left(3x+1\right)\)
\(=\left(3x+1\right)\left(2x^3+2x^2-x^2-12x+6-x\right)\)
\(=\left(3x+1\right)\left[\left(2x^3-x^2\right)+\left(2x^2-x\right)-\left(12x-6\right)\right]\)
\(=\left(3x+1\right)\left[x^2\left(2x-1\right)+x\left(2x-1\right)-6\left(2x-1\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x^2+3x-2x-6\right)\)
\(=\left(3x+1\right)\left(2x-1\right)\left[\left(x^2+3x\right)-\left(2x+6\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(=\left(3x+1\right)\left(2x-1\right)\left(x+3\right)\left(x-2\right)\)
1. \(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
3. \(x^4-7x^3+14x^2-7x+1\)
\(=x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+14\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right).\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{1}{4}\right]\)
\(=x^2\left[\left(x+\dfrac{1}{x}-\dfrac{7}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=\left(x^2+1-\dfrac{7}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
Có thể phân tích thành HĐT tiếp hoặc không.
a, \(x^4-6x^3+11x^2-6x+1=0\)
=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)
=> \(x^2+3x+1=0\)
=> \(\Delta\) =\(b^2-4c\)
=\(3^2.4=5\)
Nên \(\sqrt{\Delta}=5\)
x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)
hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)
Đáp án câu a.
https://giaibaitapvenha.blogspot.com/2017/12/toan-lop-8-ai-so_27.html