K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

b, \(x^2-2\sqrt{11}+11=0\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

7 tháng 6 2017

a) \(x^2-5=0\)

\(x^2=5\Leftrightarrow x=-\sqrt{5}\) hoặc \(x=\sqrt{5}\)

Vậy S={\(-\sqrt{5}\);\(\sqrt{5}\)}

b) \(x^2-2.\sqrt{11}x+11=0\)

\(x^2-2.x.\sqrt{11}+\left(\sqrt{11}\right)^2=0\)

\(\left(x-\sqrt{11}\right)^2=0\)

\(x-\sqrt{11}=0\)

\(x=\sqrt{11}\)

Vậy S={\(\sqrt{11}\)}

\(\)

24 tháng 6 2016

a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)

<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)

b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)

=>\(x+\sqrt{11}=0\)

=> x=\(\sqrt{11}\)

28 tháng 3 2022

I my va li it so ceut

30 tháng 3 2022

`Answer:`

a) \(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)

\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\)

\(\Leftrightarrow x=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{2}\)

b) \(x^4+x^2-6=0\)

\(\Leftrightarrow x^4+3x^2-2x^2-6=0\)

\(\Leftrightarrow x^2.\left(x^2+3\right)-2\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x^2=-3\text{(Vô lý)}\end{cases}}}\)

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

21 tháng 5 2017

a/  \(\sqrt{4x^2}=6\Rightarrow\left|2x\right|=6\Rightarrow\orbr{\begin{cases}2x=6\\2x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}}\) 

b/ \(x^2-2\sqrt{11}x+11=0\Rightarrow\left(x-\sqrt{11}\right)^2=0\Rightarrow x=\sqrt{11}\)

c/ \(\sqrt{16x}=8\Rightarrow4\sqrt{x}=8\Rightarrow\sqrt{x}=2\Rightarrow x=4\) (ĐKXĐ : x>=0)

26 tháng 10 2017

a)A<=>\(\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}\)=0(đk -2<=x)

<=>\(\sqrt{x+2}\left(1+\sqrt{x+2}\right)\)=0

vì 1+\(\sqrt{x+2}\) >=1 nên để A=0 thì \(\sqrt{x+2}\)=0

=>x+2=0

=>x=-2

26 tháng 10 2017

b)B<=>\(\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{x+1}\)=0(đk -1<=x<=1

<=>\(\sqrt{x+1}\left(\sqrt{1-x}+1\right)\)=0

\(\sqrt{1-x}+1\)\(>=\)1 nên để B=0 thì \(\sqrt{x+1}=0\)

<=> x+1=0

=>x=-1