Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge-1\)
\(2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Rightarrow x=3\)
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)
Ta có \(VT\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(1\le\sqrt{x-1}\le2\Rightarrow2\le x\le5\)
Vậy nghiệm của pt là \(2\le x\le5\)
c/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
- Với \(\sqrt{x-1}\ge1\Rightarrow x\ge2\) ta có:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\) (luôn đúng)
- Với \(1\le x< 2\) ta có:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\Rightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
d/ ĐKXĐ: \(-\le x\le1\)
\(\Leftrightarrow\sqrt{5-4x^2+4\sqrt{1-x^2}}+\sqrt{5-4x^2-4\sqrt{1-x^2}}=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2+2\sqrt{4-4x^2}+1}+\sqrt{4-4x^2-2\sqrt{4-4x^2}+1}=2x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{4-4x^2}+1\right)^2}+\sqrt{\left(\sqrt{4-4x^2}-1\right)^2}=2x+2\)
\(\Leftrightarrow\left|\sqrt{4-4x^2}+1\right|+\left|\sqrt{4-4x^2}-1\right|=2x+2\)
TH1: \(\sqrt{4-4x^2}\ge1\Rightarrow-\frac{\sqrt{3}}{2}\le x\le\frac{\sqrt{3}}{2}\) ta có:
\(\sqrt{4-4x^2}+1+\sqrt{4-4x^2}-1=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2}=x+1\)
\(\Leftrightarrow4-4x^2=x^2+2x+1\)
\(\Leftrightarrow5x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{5}\end{matrix}\right.\)
TH2: \(\left[{}\begin{matrix}-1\le x< -\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}< x\le1\end{matrix}\right.\) ta có:
\(\sqrt{4-4x^2}+1+1-\sqrt{4-4x^2}=2x+2\)
\(\Leftrightarrow2x=0\Rightarrow x=0\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=\frac{3}{5}\)
a/ ĐKXĐ: \(-2\le x\le2\)
Đặt \(x+\sqrt{4-x^2}=a\Rightarrow a^2=4+2x\sqrt{4-x^2}\Rightarrow x\sqrt{4-x^2}=\frac{a^2-4}{2}\)
\(\Rightarrow a-\frac{3\left(a^2-4\right)}{2}=2\)
\(\Leftrightarrow-3a^2+2a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\sqrt{4-x^2}=2\\x+\sqrt{4-x^2}=-\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4-x^2}=2-x\\3\sqrt{4-x^2}=-4-3x\left(x\le-\frac{4}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x^2=x^2-4x+4\\12\left(4-x^2\right)=9x^2+24x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x=0\\21x^2+24x-32=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\frac{-12+4\sqrt{51}}{2}\left(l\right)\\x=\frac{-12-4\sqrt{51}}{2}\end{matrix}\right.\)
Mấy câu còn lại và bài kia tầm 30ph nữa sẽ làm, bận chút xíu việc
b/ ĐKXĐ: \(-2\le x\le2\)
\(\Leftrightarrow\left(2\sqrt{4-x^2}+4+4\right)\left(\sqrt{x+2}+\sqrt{2-x}\right)-5=0\)
Đặt \(\sqrt{x+2}+\sqrt{2-x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
\(\Rightarrow\left(a^2+4\right)a-5=0\)
\(\Leftrightarrow a^3+4a-5=0\Leftrightarrow\left(a-1\right)\left(a^2+a+5\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{x+2}+\sqrt{2-x}=1\)
\(\Leftrightarrow4+2\sqrt{4-x^2}=1\Rightarrow2\sqrt{4-x^2}=-3\)
Vậy pt vô nghiệm
Thật ra bài này có thể biện luận vô nghiệm ngay từ đầu:
\(\sqrt{x+2}+\sqrt{2-x}\ge\sqrt{x+2+2-x}=2\)
\(2\left(\sqrt{4-x^2}+4\right)\ge2.4=8\)
\(\Rightarrow VT>8.2-5=11>0\) nên pt vô nghiệm
a) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đặt \(\sqrt{x^2-3x+3}=a;\sqrt{x^2-3x+6}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\b^2-a^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(b+a\right)\left(b-a\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=3\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\) (nhận)
\(\Rightarrow\sqrt{x^2-3x+3}=1\)
\(\Leftrightarrow x^2-3x+3=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (nhận)
b) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
Đặt \(\sqrt{3-x+x^2}=a;\sqrt{2+x-x^2}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\\left(b^2+2b+1\right)+b^2-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2\left(b-1\right)\left(b+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) (vì \(b+2>0\)) (nhận)
\(\Rightarrow\sqrt{2+x-x^2}=1\)
\(\Leftrightarrow2+x-x^2=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) (nhận)
d) \(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
\(\Leftrightarrow2\left(x+\dfrac{1}{4x}\right)+4=5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)\)
\(\Leftrightarrow2\left[\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-1\right]-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+2=0\)
Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Rightarrow2a^2-5a+2=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(\text{nhận}\right)\\a=\dfrac{1}{2}\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{2+\sqrt{2}}{2}\\\sqrt{x}=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.
c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.
1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)
\(t^3+2=2t-2\)
\(\Leftrightarrow t^3-2t+4=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)
\(\Rightarrow t=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)
\(\Leftrightarrow x^2+5x-2=-8\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)
\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)
đa phần mình sử dụng phương pháp liên hợp nha bạn
\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:
\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)
d. điều kiện: \(x\le-4\cup x\ge0\), pt:
\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)
e. điều kiện:x thuộc R
\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)
(1) mình không biết có vô nghiệm không nữa và cũng thua luôn
f. điều kiện: \(x\ge-2\)
bài này giải cách hơi khác một chút
đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)
pt:
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)
mà \(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)
=> (1) = (2)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)
TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)
g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)
pt:
\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)
\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)
(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)
b/ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)
Thay \(x=1\) vào pt thấy ko thỏa mãn
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
a/ ĐKXĐ: \(-2\le x\le5\)
\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(x+2\right)\left(5-x\right)}-4=0\)
Đặt \(\sqrt{x+2}+\sqrt{5-x}=a>0\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}\)
\(\Rightarrow a+\frac{a^2-7}{2}-4=0\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x+2\right)\left(5-x\right)}=\frac{a^2-7}{2}=1\)
\(\Leftrightarrow-x^2+3x+10=1\)
\(\Leftrightarrow x^2-3x-9=0\)
b/ \(\Leftrightarrow\sqrt{x+1}-\sqrt{4-x}+2\left(5+2\sqrt{\left(x+1\right)\left(4-x\right)}\right)=17\)
Đặt \(\sqrt{x+1}-\sqrt{4-x}=a\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{5-a^2}{2}\)
\(a+2\left(5+5-a^2\right)=17\)
\(\Leftrightarrow-2a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}-\sqrt{4-x}=-1\\\sqrt{x+1}-\sqrt{4-x}=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}+1=\sqrt{4-x}\\2\sqrt{x+1}=2\sqrt{4-x}+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2+2\sqrt{x+1}=4-x\\4x+4=25-4x+12\sqrt{4-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1-x\left(x\le1\right)\\12\sqrt{4-x}=8x-21\left(x\ge\frac{21}{8}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\left(1-x\right)^2\\144\left(4-x\right)=\left(8x-21\right)^2\end{matrix}\right.\)
c/ ĐKXĐ: \(0\le x\le1\)
Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)
\(a^2-1=3\left(a-1\right)\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-x^2}=\frac{a^2-1}{2}=0\\\sqrt{x-x^2}=\frac{a^2-1}{2}=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-x^2=0\\x-x^2=\frac{9}{4}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{5+2x}=a\ge0\\\sqrt{5-2x}=b\ge0\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}\left(3a-1\right)\left(3b-1\right)=16\\a^2+b^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3ab-\left(a+b\right)=5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3ab-5\\\left(a+b\right)^2-2ab=10\end{matrix}\right.\)
\(\Rightarrow\left(3ab-5\right)^2-2ab=10\)
\(\Leftrightarrow9\left(ab\right)^2-32ab+15=0\Rightarrow\left[{}\begin{matrix}ab=3\\ab=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(ab\right)^2=9\\\left(ab\right)^2=\frac{25}{81}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}25-4x^2=9\\25-4x^2=\frac{25}{81}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=4\\x^2=\frac{500}{81}\end{matrix}\right.\)
a) Câu hỏi của nguyen ha giang - Toán lớp 8 | Học trực tuyến
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html