K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

a)

Đặt \(\frac{x}{2}=t\Rightarrow 3^{2t}-4=5^t\)

\(\Leftrightarrow 9^t-5^t=4\)

TH1: \(t>1\Rightarrow 9^t-5^t< 4^t\)

\(\Leftrightarrow 9^t< 4^t+5^t\)

\(\Leftrightarrow 1< \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t\) \((*)\)

Ta thấy vì \(\frac{4}{9};\frac{5}{9}<1 \), do đó với \(t>1\Rightarrow \left\{\begin{matrix} \left(\frac{4}{9}\right)^t< \frac{4}{9}\\ \left(\frac{5}{9}\right)^t< \frac{5}{9}\end{matrix}\right.\)

\(\Rightarrow \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t< \frac{4}{9}+\frac{5}{9}=1\) (mâu thuẫn với (*))

TH2: \(t<1 \) tương tự TH1 ta cũng suy ra mâu thuẫn

do đó \(t=1\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

b)

Ta có: \(5^{2x}=3^{2x}+2.5^x+2.3^x\)

\(\Leftrightarrow (5^{2x}-2.5^{x}+1)=3^{2x}+2.3^x+1\)

\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)

\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)

Dễ thấy \(5^x+3^x>0\forall x\in\mathbb{R}\Rightarrow 5^x-3^x-2=0\)

\(\Leftrightarrow 5^x-3^x=2\)

\(\Leftrightarrow 5^x=3^x+2\)

Đến đây ta đưa về dạng giống hệt phần a, ta thu được nghiệm \(x=1\)

c)

\((2-\sqrt{3})^x+(2+\sqrt{3})^x=4^x\)

\(\Leftrightarrow \left(\frac{2-\sqrt{3}}{4}\right)^x+\left(\frac{2+\sqrt{3}}{4}\right)^x=1\)

TH1: \(x>1\)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1;x> 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x< \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x< \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x<\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

TH2: \(x<1 \)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1; x< 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x> \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x> \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x>\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

Do đó \(x=1\)

NV
9 tháng 6 2019

a/ ĐKXĐ: \(x>\frac{1}{2}\)

\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)

\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)

Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)

Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)

\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến

Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

NV
9 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)

Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:

\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)

Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)

Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)

\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến

\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)

\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)

Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)

\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)

\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)

\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)

15 tháng 10 2020

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

15 tháng 10 2020

cái đó phải là \(-42\log_{16x}x\) nhé bạn

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)

 
29 tháng 3 2016

d) Đưa 2 vế về cùng cơ số 2, ta được

\(2^{-3}.2^{4x-6}=\left(2^{\frac{-5}{2}}\right)^x\) hay \(2^{4x-9}=2^{\frac{5}{2}x}\)

Do đó :

\(4x-9=\frac{5}{2}x\Leftrightarrow\frac{3}{2}x=9\Leftrightarrow x=6\)

Vậy phương trình đã cho chỉ có 1 nghiệm x=6

29 tháng 3 2016

c) Phương trình đã cho tương đương với :

\(\frac{1}{4}.4^x+16.4^x=10\Leftrightarrow\frac{33}{2}.4^x=10\Leftrightarrow4^x=\frac{20}{33}\Leftrightarrow x=\log_4\frac{20}{33}\)

Vậy nghiệm của phương trình là \(x=\log_4\frac{20}{33}\)

2 tháng 4 2017

a) Đặt t = 13x > 0 ta được phương trình:

13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0

⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0

b)

Chia cả hai vế phương trình cho 9x ta được phương trình tương đương

(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x

Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:

(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}

Với t=13t=13 ta được nghiệm x=log2313x=log2313

Với t = 1 ta được nghiệm x = 0

c) Điều kiện: x > 2

Vì nên phương trình đã cho tương đương với:

[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5

d) Điều kiện: x > 0

log22x – 5log2x + 6 = 0

⇔(log2x – 2)(log2x – 3) = 0

⇔ x ∈ {4, 8}