K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 5 2020

Nhân 2 vế với 2 rồi chuyển vế và rút gọn

Bạn Tên Là Long

NV
25 tháng 5 2020

a/ \(\Leftrightarrow2x^3+9x^2-27=0\)

\(\Leftrightarrow2x^3+12x^2+18x-3x^2-18x-27=0\)

\(\Leftrightarrow2x\left(x^2+6x+9\right)-3\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)^2=0\)

\(\Leftrightarrow...\)

b/ \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)

\(\Leftrightarrow x^3-3x^2-3x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)

c/ \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(x^2+x=t\)

\(t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+4=0\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-72=0\)

\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)

Đặt \(x^2-9x+14=0\)

\(t\left(t+6\right)-72=0\Leftrightarrow t^2+6t-72=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-9x+14=6\\x^2-9x+14=-12\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+8=0\\x^2-9x+26=0\end{matrix}\right.\)

22 tháng 7 2017

TA CÓ:

\(a,\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\Leftrightarrow\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\left(x-3\right)\left(4x-1-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

\(b,\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\Leftrightarrow\left(x+3\right)\left(x-5+3x-4\right)=0\)

\(\left(x-3\right)\left(4x-9\right)=0\orbr{\begin{cases}x=3\\x=\frac{9}{4}\end{cases}}\)

\(c,\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\Leftrightarrow\left(1-x\right)\left(5x+3\right)=\left(7-3x\right)\left(1-x\right)\)

\(\left(1-x\right)\left(5x+3-7+3x\right)=0\Leftrightarrow\left(1-x\right)\left(8x-4\right)=0\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

2 tháng 11 2016

a)x4+2x3+5x2+4x-12

=(x4+2x3+x2)+(4x2+4x)-12

=(x2+x)2+4(x2+x)-12

Đặt t=x2+x

=t2+4t-12=(t-2)(t+6)

=(x2+x-2)(x2+x+6)

=(x-1)(x+2)(x2+x+6)

b)(x+1)(x+2)(x+3)(x+4)+1

=(x2+5x+4)(x2+5x+6)+1

Đặt x2+5x+4=t

t(t+2)+1=t2+2t+1

=(t+1)2=(x2+5x+4+1)2

=(x2+5x+5)2

c)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

t(t+8)+15=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+5)

=(x2+8x+10)(x+2)(x+6)

d)(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=x2+5x+4 

t(t+2)-24=(t-4)(t+6)

=(x2+5x+4-4)(x2+5x+4+6)

=x(x+5)(x2+5x+10)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

29 tháng 12 2019

\(a,2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
\(\Leftrightarrow2x^2+10x=x^2+6x+9+x^2-2x+1+20\)
\(\Leftrightarrow2x^2-x^2-x^2+10x-6x+2x=30\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)

\(b,\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+3x-10\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+9x-30\)

\(\Leftrightarrow4x^2-8x-x^2-3x^2-2x-9x=-33\)

\(\Leftrightarrow-19x=-33\)

\(\Leftrightarrow x=\frac{33}{19}\)

\(c,\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)

\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2\left(x^2-x-2\right)+38\)

\(\Leftrightarrow6x=25\)

\(\Leftrightarrow x=\frac{25}{6}\)

12 tháng 2 2020

a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+8\)

\(\Rightarrow\left(3x+2+3x-2\right)\left(3x+2-3x+2\right)=5x+8\)

\(\Rightarrow4.6x=5x+8\Rightarrow24x=5x+8\)

\(\Rightarrow19x=8\Rightarrow x=\frac{8}{19}\)

12 tháng 2 2020

b) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Rightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)

\(\Rightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

\(\Rightarrow-12x+12+9x-9=3x-9\)

\(\Rightarrow-3x+3=3x-9\)

\(\Rightarrow6x=12\Rightarrow x=2\)

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)

=>-x^2+2x-1=10x-5x^2-11x-22

=>-x^2+2x-1=-5x^2-x-22

=>4x^2+3x+21=0

=>PTVN

b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)

=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)

=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80

=>20x+16=32x-80

=>-12x=-96

=>x=8

c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)

=>6x-18+7x-35=13x+4

=>-53=4(loại)

d: =>3(2x-1)-5(x-2)=3(x+7)

=>6x-3-5x+10=3x+21

=>3x+21=x+7

=>x=-7

e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1

=>-9x^2+9x-9=-9x^2+1

=>9x=10

=>x=10/9