Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
a, \(\Leftrightarrow3x^2-3+5=3x^2+2x-3x-2\)
\(\Leftrightarrow3x^2-3x-2x+3x=-2+3-5\)
<=>x=-4
b, \(\Leftrightarrow\dfrac{x+4}{5}-\dfrac{5x}{5}+\dfrac{20}{5}=\dfrac{2x}{6}-\dfrac{3\left(x-2\right)}{6}\)
\(\Leftrightarrow\dfrac{x+4-5x+20}{5}=\dfrac{2x-3x+6}{6}\)
\(\Leftrightarrow\dfrac{6\left(-4x+24\right)}{30}=\dfrac{5\left(-x+6\right)}{30}\)
<=>-24x+144=-5x+30
<=>-5x+24x=144-30
<=>19x=114
<=>x=6
1)
\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)
\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)
\(\Leftrightarrow x=105\)
b)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
\(\Leftrightarrow50-x=0\)
\(\Leftrightarrow x=50\)
2)
\(\left(5x+1\right)^2=\left(3x-2\right)^2\)
\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)
\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)
\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)
\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
a) \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(=>\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(=>\left(4x+2\right)\left(2x-4\right)=0\)
\(=>4\left(2x+1\right)\left(x-2\right)=0\)
\(=>\orbr{\begin{cases}2x+1=0\\x-2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=-\frac{1}{2}\\x=2\end{cases}}\)
b)\(x^3-\frac{x}{49}=0=>x\left(x^2-\frac{1}{49}\right)=0=>x\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)
\(=>x=0\)hoặc \(x=\frac{1}{7}\) hoặc \(x=-\frac{1}{7}\)
a)\(\(\left(3x-1\right)^2-\left(x+3\right)^2=0\)\)
\(\(\Leftrightarrow\left(3x-1-x-3\right)\left(3x-1+x+3\right)=0\)\)
\(\(\Leftrightarrow\left(2x-4\right)\left(4x+2\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\4x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)\)
b)\(\(x^3-\frac{x}{49}=0\)\)
\(\(\Leftrightarrow\frac{49x^3-x}{49}=0\)\)
\(\(\Leftrightarrow x\left(49x^2-1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\49x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(7x-1\right)\left(7x+1\right)=0\end{cases}}}\)\)\
\(\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{7};x=-\frac{1}{7}\end{cases}}\)\)
c)\(\(x^2-7x+12=0\)\)
\(\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)\)
d) \(\(4x^2-3x-1=0\)\)
\(\(\Leftrightarrow4x^2-4x+x-1=0\)\)
\(\(\Leftrightarrow4x\left(x-1\right)+\left(x-1\right)=0\)\)
\(\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)\)
\(\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)\)
e) Tham khảo tại : [Toán 8]Giải phương trình | Cộng đồng học sinh Việt Nam - HOCMAI Forum
https://diendan.hocmai.vn/threads/toan-8-giai-phuong-trinh.290061/
_Y nguyệt_