Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)
\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)
\(A=-12x\)
\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)
\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)
\(B=-3x-12\)
Câu C tương tự.
Chúc bạn học tốt!!!
A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)
A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)
A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)
A = \(-4x^2-12x-8+4x^2+8=-12x\)
b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)
B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)
B = \(-6x^2-3x-6\)
Bài 2:
a: \(x^2-16-\left(x+4\right)=0\)
=>(x+4)(x-4)-(x+4)=0
=>(x+4)(x-5)=0
=>x=5 hoặc x=-4
b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)
=>-6x+2=0
=>-6x=-2
hay x=1/3
c: \(4x^2+9=-12x^2\)
\(\Leftrightarrow4x^2+12x^2=-9\)
\(\Leftrightarrow16x^2=-9\)(vô lý)
Do đó: \(x\in\varnothing\)
d: \(4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
=>x=1 hoặc x=1/4
e: \(4x^2-4x+3=0\)
\(\Leftrightarrow4x^2-4x+1+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)
Do đó: \(x\in\varnothing\)
ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé
Bài 1:
a: \(\Leftrightarrow x^2-4x-x^2+8=0\)
=>-4x+8=0
hay x=2
b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)
=>2x+4=4
hay x=0
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
giải
bài 2;tìm x
a)(x+2)(x^2-2x+4)-x(x^2+2)=15
x^3-2x^2+4x+2x^2-4x+8-x^3-2x=15
-2x+8=15
-2x=15-8
-2x=7
x=-7/2
vậy x=-7/2
Bài 1:
a) \(9x^2-6x+2\)
\(\Leftrightarrow9x^2-6x+1+1\)
\(\Leftrightarrow\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\forall x,1>0\)
\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.
b) \(x^2+x+1\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)
\(\Rightarrow x^2+x+1\) luôn dương với mọi x.
Bài 2 :
a) \(A=x^2-3x+5\)
\(\Leftrightarrow A=x^2-3x+2+3\)
\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)
Vì \(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)
Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)
\(\Leftrightarrow B=5x^2+5\)
\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)
Vì \(x^2+1\ge1\forall x\)
=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.
Bài 3 :
a) \(A=-x^2+2x+4\)
Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.
b) \(B=-x^2+4x\)
Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.
\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c, ĐKXĐ:\(x\ne-1,x\ne2\)
\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)