Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left|9+x\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}9+x=2x\\9+x=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(Nhan\right)\\x=-3\left(Loai\right)\end{matrix}\right.\)
\(b.\left|x+6\right|=2x+9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=2x+9\\x+6=-2x-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(Nhan\right)\\x=-5\left(Loai\right)\end{matrix}\right.\)
a) \(\left|4+2x\right|=-4x\)
TH1 : \(4+2x\ge0\Leftrightarrow2x\ge-4\Leftrightarrow x\ge-2\)
\(4+2x=-4x\)
\(\Leftrightarrow2x+4x=-4\)
\(\Leftrightarrow6x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{3}\) (t/m)
TH2 : \(4+2x< 0\Leftrightarrow2x< -4\Leftrightarrow x< -2\)
\(\text{- (4 + 2x) = -4x}\)
\(\Leftrightarrow-4-2x=-4x\)
\(\Leftrightarrow-2x+4x=4\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (ko t/m)
\(S=\left\{-\dfrac{2}{3}\right\}\)
b) \(\left|-2,5x\right|=x-12\)
TH1 : \(-2,5x\ge0\Leftrightarrow x\le0\)
\(-2,5x=x-12\)
\(\Leftrightarrow-2,5x-x=-12\)
\(\Leftrightarrow-3,5x=-12\)
\(\Leftrightarrow x=\dfrac{24}{7}\) (ko t/m)
TH2 : \(-2,5x< 0\Leftrightarrow x>0\)
\(\text{2,5x = x - 12}\)
\(\Leftrightarrow2,5x-x=-12\)
\(\Leftrightarrow1,5x=-12\)
\(\Leftrightarrow x=-8\) (ko t/m)
\(S=\varnothing\)
c) \(\left|-2x\right|+x-5x-3=0\)
\(\Leftrightarrow\left|-2x\right|-4x-3=0\)
\(\Leftrightarrow\left|-2x\right|=3+4x\)
TH1 : \(-2x\ge0\Leftrightarrow x\le0\)
\(-2x=3+4x\)
\(\Leftrightarrow-2x-4x=3\)
\(\Leftrightarrow-6x=3\)
\(\Leftrightarrow x=-\dfrac{1}{2}\) (t/m)
TH2 : \(-2x< 0\Leftrightarrow x>0\)
\(\text{2x = 3 + 4x}\)
\(\Leftrightarrow2x-4x=3\)
\(\Leftrightarrow-2x=3\)
\(\Leftrightarrow x=-\dfrac{3}{2}\) (ko t/m)
\(S=\left\{-\dfrac{1}{2}\right\}\)
a) ta có
|9+x| = 9+x thì 9+x ≥ 0 ⇔ x ≥ -9
|9+x|=-(9-x)thì 9+x <0 ⇔ x<-9
th1 với x ≥ -9
9+x=2x
⇔ 9=2x-x
⇔ 9=x (tmđk)
th2 với x < -9
-(9+x)=2x
⇔ -9-x=2x
⇔ -x-2x=9
⇔ -3x=9
⇔ x=-2 (ktm)
vậy phương trình có tập nghiệm là S+{ 9}
b) Với : x < -6 , phương trình có dạng :
- x - 6 = 2x + 9
<=> -3x = 15
<=> x = - 5 ( không thỏa mãn )
Với : x ≥ - 6 , phương trình có dạng :
x + 6 = 2x + 9
<=> x = - 3 ( thỏa mãn)
Vậy , phương trình nhận : x = - 3 làm nghiệm duy nhất
c) Với : x < 0 , phương trình có dạng :
- 5x = 3x - 2
<=> -8x = -2
<=> x = \(\dfrac{1}{4}\) ( không thỏa mãn )
Với : x ≥ 0 , phương trình có dạng :
5x = 3x - 2
<=> 2x = -2
<=> x = -1 ( không thỏa mãn )
Vậy, phương trình đã cho vô nghiệm
một tủ sách lớp 5 của 1 trường TH có 120 cuốn sách GK sách tham khảo truyện thiếu nhi và tạp chí toán tuổi thơ kết quả thống kê các loại sách truyện tạp trên được cho như sau ;tạp chí toán tuổi thơ 25% ,sách GK 10% ,truyện thiếu nhi 35% , sách tham khảo 30%.Hỏi trong tủ sách có bao nhiêu cuốn truyện thiếu nhi ,bao nhiêu cuốn tạp chí tuổi thơ ?
a, TH1: 9+x=2x
=> x-2x=-9
=> -x=-9
=> x=9
TH2: 9+x=-2x
=> x+2x=-9
=> 3x=-9
=>x=-3
b, TH1: x-1=3x+2
=>x-3x=2+1
=> -2x=3
=> x=-3/2
TH2: x-1=-3x-2
=> x+3x=-2+1
=> 4x=-1
=> x=-1/4
c, TH1: x+6=2x+9
=> x-2x=9-6
=> -x=3
=> x=-3
TH2: X+6=-2x-9
=> x+2x=-9-6
=>3x=-15
=>x=-5
d, TH1: 7-x=5x+1
=> -x-5x=1-7
=> -6x=-6
=> x=1
TH2: 7-X=-5x-1
=> -x+5x=-1-7
=> 4x=-8
=> x=-2
(1) cho A = 4,25 x(b + 41,53 ) - 125. tim b de A co gia tri =300 . (2)
a)|x+6|>=0 => 2x>=0 => x>=0 => x+6>=6>0 => |x+6|=x+6
=> x+6=2x=> x=6(thỏa mãn)
b)tương tự có được x=-3(thỏa mãn)
a) \(|9+x|=2x\)
\(\Leftrightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}9=2x-x\\9=-2x+x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=-9\end{cases}}}\)
b) \(|x+6|=2x+9\)
\(\Leftrightarrow\orbr{\begin{cases}x+6=2x+9\\x+6=-2x-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=9-6\\x+2x=-9-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=3\\3x=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)