K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

30 tháng 3 2017

a) \(4x^2-x+1< 0\)

Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.

Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.


30 tháng 3 2017

b) f(x) = - 3x2 + x + 4 = 0

\(\Delta=1^2-4\left(-3\right).4=49\)

\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)

\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)

- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .



c: \(\Leftrightarrow\left\{{}\begin{matrix}4x+3>=0\\\left(x+2-4x-3\right)\left(x+2+4x+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(-3x-1\right)\left(5x+5\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(3x+1\right)\left(x+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow x>-\dfrac{1}{3}\)

d: \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2< 0\\2x+1>=0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2>=0\\\left(2x+1-3x+2\right)\left(2x+1+3x-2\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{2}{3}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(-x+3\right)\left(5x-1\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< x< \dfrac{2}{3}\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-3\right)\left(5x-1\right)< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}< x< \dfrac{2}{3}\\\dfrac{2}{3}< =x< =3\end{matrix}\right.\)

16 tháng 3 2020

\(21,\frac{2}{x-1}\le\frac{5}{2x-1}\left(x\ne1;x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{2}{x-1}-\frac{5}{2x-1}\le0\)

\(\Leftrightarrow\frac{4x-2-5x+5}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

\(\Leftrightarrow\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

x -x+3 x-1 2x-1 VT -∞ +∞ 1/2 1 3 0 0 0 | | || | | || | | 0 - + + + + + - - - + + + + + + - -

Vậy \(\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\le0\Leftrightarrow x\in\left(\frac{1}{2};1\right)\cup[3;+\text{∞})\)

23,24 tương tự 21

\(25,2x^2-5x+2< 0\) (1)

Ta có: \(\left\{{}\begin{matrix}2x^2-5x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\a=2>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{2}< x< 2\)

\(26,-5x^2+4x+12< 0\)

\(\left\{{}\begin{matrix}-5x^2+4x+12=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{6}{5}\end{matrix}\right.\\a=-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\frac{6}{5}\end{matrix}\right.\)

\(27,16x^2+40x+25>0\)

\(\left\{{}\begin{matrix}16x^2+40x+25=0\Leftrightarrow x=-\frac{5}{4}\\a=16>0\end{matrix}\right.\)

\(\Leftrightarrow x\ne-\frac{5}{4}\)

\(28,-2x^2+3x-7\ge0\)

\(\left\{{}\begin{matrix}-2x^2+3x-7=0\left(vo.nghiem\right)\\a=-2< 0\end{matrix}\right.\)

\(\Rightarrow-2x^2+3x-7< 0\) ∀x

=> bpt vô nghiệm

\(29,3x^2-4x+4\ge0\)

\(\left\{{}\begin{matrix}3x^2-4x+4=0\left(vo.nghiem\right)\\a=3>0\end{matrix}\right.\)

=> \(3x^2-4x+4>0\) => bpt vô số nghiệm

\(30,x^2-x-6\le0\)

\(\left\{{}\begin{matrix}x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\a=1>0\end{matrix}\right.\)

\(\Rightarrow-2\le x\le3\)

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)