K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}4x+3>=0\\\left(x+2-4x-3\right)\left(x+2+4x+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(-3x-1\right)\left(5x+5\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(3x+1\right)\left(x+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow x>-\dfrac{1}{3}\)

d: \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2< 0\\2x+1>=0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2>=0\\\left(2x+1-3x+2\right)\left(2x+1+3x-2\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{2}{3}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(-x+3\right)\left(5x-1\right)>=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< x< \dfrac{2}{3}\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-3\right)\left(5x-1\right)< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}< x< \dfrac{2}{3}\\\dfrac{2}{3}< =x< =3\end{matrix}\right.\)

5 tháng 2 2017

a) x3+4x2+x-6=0

<=> x3+3x2+x2+3x-2x-6=0

<=> x2(x+3)+x(x+3)-2(x+3)=0

<=> (x+3)(x2+x-2)=0

<=> \(\left[\begin{matrix}x+3=0\\x^2+x-2=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-3\\\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=-3\\x=1\\x=-2\end{matrix}\right.\)

Vậy ...

b) x3-3x2+4=0

<=> x3-2x2-x2+4=0

<=> x2(x-2)-(x-2)(x+2)=0

<=> (x-2)(x2-x-2)=0

<=> \(\left[\begin{matrix}x-2=0\\x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy ...

5 tháng 2 2017

c) x4+2x3+2x2-2x-3=0

<=> x4+x3+x3+x2+x2+x-3x-3=0

<=> x3(x+1)+x2(x+1)+x(x+1)-3(x+1)=0

<=> (x+1)(x3+x2+x-3)=0

<=> (x+1)(x3-x2+2x2-2x+3x-3)=0

<=> (x+1)[x2(x-1)+2x(x-1)+3(x-1)]=0

<=> (x+1)(x-1)(x2+2x+3)=0

Mà x2+2x+3=x2+2x+1+2=(x+1)2+2>0

<=> (x+1)(x-1)=0

<=>\(\left[\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\)<=> \(\left[\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy ...

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)

19 tháng 7 2018

câu b nè : http://123link.pw/fGAhMX

23 tháng 1 2017

a) x3 + 4x2 - 29x + 24 = 0

<=> x3 - x2 + 5x2 - 5x - 24x + 24 = 0

<=> x2(x - 1) + 5x(x - 1) - 24(x - 1) = 0

<=> (x - 1)(x2 + 5x - 24) = 0

\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x^2+5x-24=0\end{matrix}\right.\)

+) x - 1 = 0 <=> x = 1

+) x2 + 5x - 24 = 0

\(\Delta=5^2+4.1.24=121\Rightarrow\sqrt{\Delta}=11\)

Phương trình có 2 nghiệm phân biệt: \(x_1=\frac{-5+11}{2}=3;x_2=\frac{-5-11}{2}=-8\)

Vậy ...

23 tháng 1 2017

a. pt <=> x3+5x2-24x-x2-5x+24 =0

<=> x(x2+5x-24)-(x2+5x-24)=0

<=> (x-1)(x2+5x-24)=0

<=> \(\left[\begin{matrix}x=1\\x=3\\x=-8\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 4:

$3x^4+10x^3-3x^2-10x+3=0$

Ta đi phân tích $3x^4+10x^3-3x^2-10x+3$ thành nhân tử

Đặt $3x^4+10x^3-3x^2-10x+3=(x^2+ax+b)(3x^2+cx+d)$ với $a,b,c,d$ là các số nguyên

$\Leftrightarrow 3x^4+10x^3-3x^2-10x+3=3x^4+x^3(c+3a)+x^2(d+ac+3b)+x(ad+bc)+bd$

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} c+3a=10\\ d+ac+3b=-3\\ ad+bc=-10\\ bd=3\end{matrix}\right.\). Từ $bd=3$. Giả sử $b=-1$

$\Rightarrow d=-3$. Thay vào hệ có được $ac=3; c+3a=10\Rightarrow a=3; c=1$

Vậy $3x^4+10x^3-3x^2-10x+3=(x^2+3x-1)(3x^2+x-3)$

$\Leftrightarrow (x^2+3x-1)(3x^2+x-3)=0$

\(\Rightarrow \left[\begin{matrix} x^2+3x-1=0\\ 3x^2+x-3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3\pm \sqrt{13}}{2}\\ x=\frac{-1\pm \sqrt{37}}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 3:

$x^4+4x^3+x^2-4x+1=0$

$\Leftrightarrow (x^4+4x^3+4x^2)-3x^2-4x+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)-x^2+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)+1-x^2=0$

$\Leftrightarrow (x^2+2x-1)^2-x^2=0$

$\Leftrightarrow (x^2+x-1)(x^2+3x-1)=0$

\(\Rightarrow \left[\begin{matrix} x^2+x-1=0\\ x^2+3x-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{5}}{2}\\ x=\frac{-3\pm \sqrt{!3}}{2}\end{matrix}\right.\)

Vậy.......