K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :

Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)

- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)

- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)

                                                                 \(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm

Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )

 

5 tháng 4 2016

Điều kiện xác định : \(x\ge1+\sqrt{3}\)

Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)

\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)

Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên

(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)

     \(\Leftrightarrow x^2-6x-4\le0\)

     \(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)

Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :

\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)

NV
14 tháng 4 2020

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}\ge0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)\ge0\)

\(\Leftrightarrow x-3\ge0\) (do ngoặc đằng sau luôn dương)

\(\Rightarrow x\ge3\)

28 tháng 4 2020

ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)

<=> \(-2\le x< 0\) hoặc  \(x\ge2\)

TH1:  \(-2\le x< 0\)

Bất phương trình đúng

TH2: \(x\ge2\)(@@)

bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)

<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)

<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)

<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)

<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)

<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)

<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)

<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)

<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)

Vậy -2 \(\le\) x < 0

11 tháng 2 2019

ĐKXĐ: x ≥ 3 hoặc x ≤ -3

bpt \(\Leftrightarrow\sqrt{\left(x+1\right)\left(x-3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}\ge\sqrt{\left(x+1\right)\left(x+3\right)}\)

11 tháng 2 2019

À quên, tới đây mọi người hay chia cả 2 vế cho \(\sqrt{x+1}\), nhưng x + 1 chưa chắc đã không âm đâu nha !

4 tháng 3 2016

\(\sqrt{x^2-2x}\ge x+2\)  (1)

\(\Leftrightarrow\)  \(\begin{cases}x-2<0\\x^2-2x\ge0\end{cases}\) hoặc \(\begin{cases}x+2\ge0\\x^2-2x\ge\left(x+2\right)^2\end{cases}\)

\(\Leftrightarrow\)  \(\begin{cases}x<-2\\x\le0\end{cases}\) hoặc \(\begin{cases}x<-2\\2\le x\end{cases}\)

hoặc \(\begin{cases}-2\le x\\x\le-\frac{2}{3}\end{cases}\)

\(\Leftrightarrow\)  \(x<-2\)   hoặc \(2\le x\le-\frac{2}{3}\)

\(\Leftrightarrow\) \(x\le-\frac{2}{3}\)

Vậy bất phương trình đã cho có tập nghiệm T(1) = (\(-\infty\)\(-\frac{2}{3}\))

 

6 tháng 5 2016

Điều kiện xác định :\(x\ne-1\)

Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)

\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)

                               \(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)

                               \(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)

                               \(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)

Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))

 

NV
7 tháng 5 2020

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-4\end{matrix}\right.\)

- Với \(x\le-4\Rightarrow\left\{{}\begin{matrix}VP< 0\\VT\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge3\) BPT tương đương:

\(x^2+x-12< x^2+2x+1\Leftrightarrow x>-13\)

Vậy nghiệm của BPT là \(x\ge3\)

b/ - Với \(x< 2\Rightarrow\left\{{}\begin{matrix}VT\ge0\\Vp< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge2\) hai vế ko âm

\(\Leftrightarrow x^2-3x+10\ge x^2-4x+4\Rightarrow x\ge-6\)

Vậy nghiệm của BPT là \(D=R\)

c/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2-2x>2x-3\)

\(\Leftrightarrow x^2-4x+3>0\Rightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)