Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+3\left|x-1\right|< 3\)
\(-3< x-1< 3\)
\(-2< x< 4\)
\(x\in\left\{-1;0;1;2;3\right\}\)
Ta có :
\(\frac{x+1}{x}< 2\)
\(\Leftrightarrow\)\(x+1< 2x\)
\(\Leftrightarrow\)\(1< 2x-x\)
\(\Leftrightarrow\)\(x>1\)
Vậy \(x>1\)
Ta có:\(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2-2x< 3+9\)
\(\Leftrightarrow-2x< 12\)
\(\Leftrightarrow x>-6\)
Vậy tập nghiệm của BPT (1) là \(S=\left\{x\in R|x>-6\right\}\)
Cách giải
a, 2x - x (3x + 1 ) < 15 - 3x(x + 2)
<=> 2x - 3x2 - x < 15 - 3x2 - 6x
<=> 7x < 15
<=> x < 15/7 Vậy Tập nghiệm của BPT là : { x / x < 15/7 }
b , BPT <=> 2(1 - 2x ) - 16 < 1 - 5x + 8x
<=> -7x < 15
<=> x > -15/7 Vậy tập nghiệm của BPT là : { x / x > -15/7 }
a) 2x-x(3x+1) < 15-3x(x+2)
<=> 2x-3x2-x < 15-3x2-6x
<=> 2x-3x2-x+3x2+6x < 15
<=> 7x < 15
<=> x < 15/7
Vậy tập nghiệm của bất phương trình là x < 15/7
b) \(\frac{1-2x}{4}-2\le\frac{1-5x}{8}+x\)
Quy đồng mẫu ta được :
\(\frac{2-4x}{8}-\frac{16}{8}\le\frac{1-5x}{8}+\frac{8x}{8}\)
Khử mẫu
=> \(2-4x-16\le1-5x+8x\)
<=> \(-4x+5x-8x\le1-2+16\)
<=> \(-7x\le15\)
<=> \(x\ge-\frac{15}{7}\)
Vậy tập nghiệm của bất phương trình là \(x\ge-\frac{15}{7}\)
x + 1/x < 2
<=> x^2/x + 1/x < 2x/x
<=> x^2+1/x < 2x/x
<=> x^2+1/x - 2x/x < 0
<=> x^2+1-2x/x < 0
<=> x^2-2x+1/x < 0
<=> (x-1)^2/x < 0
Vì (x-1)^2 >= 0
mà (x-1)^2/x < 0 => (x-1)^2 > 0 ; x < 0 <=> x < 0
Vậy x < 0
Tk mk nha
\(\frac{x+1}{x}< 2\) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x}-2< 0\)
\(\frac{x+1}{x}-\frac{2x}{x}< 0\)
\(\frac{x+1-2x}{x}< 0\)
\(\frac{1-x}{x}< 0\)
\(\Leftrightarrow\hept{\begin{cases}1-x>0\\x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}1-x< 0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x< 1\\x>0\end{cases}}\)
hay \(0< x< 1\)