K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

|x - 6| < x2 - 5x + 9  (1)

Xét 2 trường hợp:

* Với x - 6 \(\ge0\) => x \(\ge6\) , (1) trở thành: x - 6 < x2 - 5x + 9 => x2 - 6x + 15 > 0          

    Có: pt x2 - 6x + 15 có \(\Delta<0\) => x2 - 6x + 15 > 0 với mọi x thuộc R

 

        => S1 = [6 ; +\(\infty\))

* Với x - 6 < 0 => x < 6 , (1) trở thành: 6 - x < x2 - 5x + 9 => x2 - 4x + 3 > 0     

     Lập bảng xét dấu:  

x \(-\infty\)                           1                                  3                     \(+\infty\)
x- 4x + 3                     +             0               -                 0          +

          => x2 - 4x + 3 > 0 khi x \(\in\) (-\(\infty\); 1) \(\cup\) (3 ; +\(\infty\))

          => S2 = (- \(\infty\); 1) \(\cup\) (3 ; 6)

Vậy S = S1 \(\cup\) S2 = (- \(\infty\) ; 1) \(\cup\)(3 ; 6]               

2 tháng 4 2017

a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)

2 tháng 4 2017

a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0

<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0

Bảng xét dấu:

Từ bảng xét dấu cho tập nghiệm của bất phương trình:

T = ∪ [2; +∞).

b) <=>

<=>

<=>

<=>

Tập nghiệm của bất phương trình T = (-; - 5) ∪ (- 1; 1) ∪ (1; +).

6 tháng 4 2017

a) \(x^2\ge4x\)(1)

Nếu \(\left[{}\begin{matrix}x_1=0\\x_2=4\end{matrix}\right.\) \(\Rightarrow VT=VP\)

Nếu \(x< 0\Rightarrow VT>0;VP< 0\)=> \(VT>VP\)

Nếu 0<x<4 \(\Rightarrow VT< VP\)

nếu x> 4\(\Rightarrow VT>VP\)

Kết luận nghiệm BPT (1): \(\left[{}\begin{matrix}x\le0\\x\ge4\end{matrix}\right.\)

b)

(1) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)

(2) \(\Rightarrow-2\le x\le3\)

KL nghiệm

\(\left[{}\begin{matrix}-2\le x< \dfrac{3-\sqrt{5}}{2}\\\dfrac{3+\sqrt{5}}{2}< x\le3\end{matrix}\right.\)

9 tháng 5 2017

a)\(Bpt\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-4x\ge0\left(1\right)\\\left(2x-1\right)^2-9>0\left(2\right)\end{matrix}\right.\)
Giải (1): \(x^2-4x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)
Giải (2): \(\left(2x-1\right)^2-9=\left(2x-1\right)^2-3^2=\left(2x-4\right)\left(2x+2\right)\)
\(\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vì vậy: \(\left(2x-1\right)^2-9< 0\Leftrightarrow-1< x< 2\).
Kết hợp điều kiện \(\left(1\right)\)\(\left(2\right)\) suy ra: \(-1< x\le0\) thỏa mãn hệ bất phương trình.

15 tháng 4 2017

a) - x + 2 + 2(y - 2) < 2(1 - x) <=> y <

Tập nghiệm của bất phương trình là:

T = {(x, y)|x ∈ R; y < }.

Để biểu diễn tập nghiệm T trên mặt phẳng tọa độ, ta thực hiện:

+ Vẽ đường thẳng (d): y=

+ Lấy điểm gốc tọa độ O(0; 0) (d).

Ta thấy: 0 < - 0 + 2. Chứng tỏ (0; 0) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng (d) (không kể bờ) chứa gốc O(0; 0) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

16 tháng 2 2016

lớp mấy

3 tháng 8 2019

\(6\sqrt{x^2-34x+64}=x^2-34x+48\)

\(\text{đ}at:x^2-34x+48=a\Rightarrow6\sqrt{a+16}=a\Leftrightarrow36a+576=a^2\Leftrightarrow a^2-36a-576=0;\Delta=\left(-36\right)^2-4.\left(-576\right).1=3600\Rightarrow\left\{{}\begin{matrix}a_1=24\\a_2=-96\end{matrix}\right.\)

\(+,a=-96\Rightarrow x^2-34x+48=-96\Leftrightarrow x^2-34x+144=0;\Delta=34^2-4.144=580\Rightarrow\left\{{}\begin{matrix}x_1=-34+2\sqrt{145}\\x_2=-34-2\sqrt{145}\end{matrix}\right.\)

\(+,a=24\Rightarrow x^2-34x+48=24\Leftrightarrow x^2-34x+24=0;\Delta=1156-96=1060\Rightarrow\left\{{}\begin{matrix}x_1=-34+2\sqrt{265}\\x_2=-34-2\sqrt{265}\end{matrix}\right.\)

30 tháng 1 2016

\(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(>0\right)}\le0\Rightarrow\left(x-1\right)\left(x+1\right)\le0\Rightarrow-1\le x\le1\)

30 tháng 1 2016

x=0 đúng