K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

3x2-x+1>0

x(3x-1)+1>0

Vì 1>0 mà x(3x-1)+1>0 thì x(3x-1)>0

*)Nếu x>0 thì 3x-1>0

                   3x>1

                   x>1/3

=>x>1/3 

*)Nếu x<0 thì 3x-1<0

                     3x<1

                    x<1/3

=>x<0

Vậy hoặc x>1/3 hoặc x<0 thì 3x2-x+1>0

mk ko biết giải vầy đúng chưa nhưng (mk giải theo kiến thức lớp 7)

7 tháng 4 2015

a) -1<X<-1/2

b) X<-1.2<X

9 tháng 8 2017

cái này có một cách rất dễ:Với máy fx570Vn chẳng hạn,bn bấm Mode>>>Mũi tên xuống>>>1>>>1>>>1>>>3=-5=1=là có kết quả

31 tháng 8 2017

 Vì (3x-1)(x+2)>0 
=> (3x-1) và (x+2) cùng dấu 
Xét trường hợp (3x-1) và (x+2) cùng dương 
3x+1>0=> x>-1/3 
và x+2>0=> x>-2 
Xét trường hợp (3x-1) và (x+2) cùng âm 
3x+1<0=> x<-1/3 
và x+2<0=> x<-2 
từ 2 TH trên => x>-1/3 và x<-2

Vì ( 3x -1 )( x + 2 ) > 0 
=> ( 3x-1) và (x+2) cùng dấu 
Xét trường hợp (3x-1) và (x+2) cùng dương 
3x+1 > 0 => x > (-1/3 )
và x+2 > 0=> x > ( -2 )
Xét trường hợp (3x-1) và (x+2) cùng âm 
3x+1 < 0 => x < (-1/3 )
và x+2 < 0 => x < (-2)
từ 2 TH trên => x > (-1/3 ) và x < (-2)

a, \(16x^2-5=0\)

\(\Rightarrow16x^2=5\)

\(\Rightarrow x^2=\frac{5}{16}\)

\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)

b, \(2\sqrt{x-3}=4\)

\(\Rightarrow\sqrt{x-3}=4:2\)

\(\Rightarrow\sqrt{x-3}=2\)

\(\Rightarrow x-3=4\)

\(\Rightarrow x=4+3\)

\(\Rightarrow x=7\)

c, \(\sqrt{4x^2-4x+1}=3\)

\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Rightarrow2x-1=3\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

d, \(\sqrt{x+3}\ge5\)

\(\Rightarrow x+3\ge25\)

\(\Rightarrow x\ge22\)

e, \(\sqrt{3x-1}< 2\)

\(\Rightarrow3x-1< 4\)

\(\Rightarrow3x< 5\)

\(\Rightarrow x< \frac{5}{3}\)

g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Rightarrow\sqrt{x-3}=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

7 tháng 7 2019

a) \(16x^2-5=0\)

\(\Leftrightarrow16x^2=5\)

\(\Leftrightarrow x^2=\frac{5}{16}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)

b) \(2\sqrt{x-3}=4\)

\(\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\)

\(\Leftrightarrow x=7\)

c) \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

d) \(\sqrt{x+3}\ge5\)

\(\Leftrightarrow x+3\ge25\)

\(\Leftrightarrow x\ge22\)

e) \(\sqrt{3x-1}< 2\)

\(\Leftrightarrow3x-1< 4\)

\(\Leftrightarrow3x< 5\)

\(\Leftrightarrow x< \frac{5}{3}\)

g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Leftrightarrow\sqrt{x-3}=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)