Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
<=> \(9-6x>10-5x\)
<=> 9 - 10 > -5x + 6x
<=> x < -1
Vậy nghiệm của bất phương trình là x < -1
b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
<=> \(x-1-2x+2\le3x\)
<=> \(-x+1\le3x\)
<=> \(1\le2x\)
<=> x \(\ge\frac{1}{2}\)
Vậy nghiệm của bất phương trình là x > = 1/2
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
<=> 2x + 1 > 2x - 13
<=> 1 > -13 (luôn đúng)
Vậy nghiệm của bất phương trình luôn đúng với mọi x
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
⇔\(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
⇔2x + 2 > 2x - 13
⇔0x > -15
Vậy S=Φ
b) \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
⇔\(\frac{x-2-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
⇔x - 2 - 2x +2 ≤ 3x
⇔-4x ≤ 0
⇔x ≥ 0
Vậy S={x | x ≥ 0}
1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)
Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?
a. \(x+8>3x-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge2\)
c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)
d. \(2\left(3x-1\right)-2x< 2x+1\)
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow2x< 3\)
\(\Leftrightarrow x< \frac{3}{2}\)
e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)
f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)
g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow2x+2>2x-1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-25\)
\(\Leftrightarrow x>-\frac{25}{2}\)
i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow x+5-4x-2\le3x+9\)
\(\Leftrightarrow-6x\le6\)
\(\Leftrightarrow x\ge-1\)
j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow10x+8-2x+1\ge48\)
\(\Leftrightarrow8x\ge39\)
\(\Leftrightarrow x\ge\frac{39}{8}\)
Bạn tự biểu diễn nghiệm trên trục số nhé!
a) \(x+8>3x-1\)
\(\Leftrightarrow x-3x>-8-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b) 3x − (2x+5) ≤ (2x−3)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x+2x\le5-3\)
\(\Leftrightarrow3x\le2\)
\(\Leftrightarrow x\le\frac{2}{3}\)
c) (x − 3) (x + 3) < x (x + 2) + 3
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2+2x< 9+3\)
\(\Leftrightarrow2x< 12\)
\(\Leftrightarrow x< 6\)
d) 2 (3x − 1) − 2x < 2x + 1
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow6x-2x+2x< 2+1\)
\(\Leftrightarrow6x< 3\)
\(\Leftrightarrow x< \frac{3}{6}\)
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-6x+5x>-9+10\)
\(\Leftrightarrow-x>1\)
\(\Leftrightarrow x< -1\)
f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow x\ge0\)
g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)
\(\Leftrightarrow2x+2>2x+1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-21\)
\(\Leftrightarrow x>\frac{-21}{2}\)
i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)
\(\Leftrightarrow x+5-4x+2\le3x+9\)
\(\Leftrightarrow-3x-x+4x\le9-5-2\)
\(\Leftrightarrow x\le2\)
j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)
\(\Leftrightarrow10x+8-2x-1\ge48\)
\(\Leftrightarrow10x-2x\ge48-8+1\)
\(\Leftrightarrow8x\ge41\)
\(\Leftrightarrow x\ge\frac{41}{8}\)
Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)
Bài 1:
a/ \(x^2+2x+1+z^2+12z+36+1=\left(x+1\right)^2+\left(z+6\right)^2+1>0\) (đpcm)
b/ Câu này đề sai, hoặc là 14y là 4y hoặc là số cuối là 1 số to hơn 16 nhiều
Bài 2:
a/ ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow12=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+2x-15=12\)
\(\Leftrightarrow x^2+2x-27=0\Rightarrow x=-1\pm2\sqrt{7}\)
b/ \(\Leftrightarrow\frac{7x}{2}-\frac{x}{3}=-\frac{6}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{19}{6}x=-\frac{3}{2}\Rightarrow x=-\frac{9}{19}\)
c/ \(\Leftrightarrow\frac{x}{3}-\frac{x}{4}=6-\frac{1}{5}-\frac{1}{2}+\frac{2}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{29}{5}\Rightarrow x=\frac{348}{5}\)
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)