Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow\left\{{}\begin{matrix}AB=5a\\AC=6a\end{matrix}\right.\)
áp dụng hệ thức lượng trong tam giác vuông ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) \(\dfrac{1}{30^2}=\dfrac{1}{\left(5a\right)^2}+\dfrac{1}{\left(6a\right)^2}\)
\(\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{25a^2}+\dfrac{1}{36a^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{900a^2}\)
\(\Leftrightarrow a^2=61\Leftrightarrow a=\sqrt{61}\)
\(\Rightarrow\) ta có : \(\left\{{}\begin{matrix}AB=5\sqrt{61}\\AC=6\sqrt{61}\end{matrix}\right.\)
áp dụng pytago ta có : \(BC=\sqrt{AB^2+AC^2}=61\)
ta có : \(BH=\dfrac{AB^2}{BC}=25\) và \(CH=\dfrac{AC^2}{BC}=36\)
vậy ...
ta có : \(AB=BC.cos\left(60\right)=5\)
\(AC=BC.cos40\simeq7,7\) Na
Cho tam giác ABC vuông ở A. Biết \(\frac{AB}{AC}\)=\(\frac{5}{7}\), đường cao AH=15 cm. Tính HB, HC.
A B C H
Có: góc ABC + góc BAH = 900
góc HAC + góc BAH = 900
=> góc ABC = góc HAC
Xét tam giác AHC và tam giác BAC có:
góc ABC = góc HAC (chứng minh trên)
góc AHC = góc BAC (=900)
=> tam giác AHC đồng dạng với tam giác BAC
\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)
Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)
Vậy HB = 75/7 cm , HC = 21cm
Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)
\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)
Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\):
\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)
Xét tam giác \(ACQ\)vuông tại \(A\):
\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)
A B C H
Đặt \(AB=x\left(cm\right)\left(x>0\right)\)
\(AC=1,4x\left(cm\right)\)
Trong \(\Delta ABC\) có: \(\widehat{A}=90^0\left(gt\right)\)
AH là đường cao ứng với BC (gt)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{x^2}+\dfrac{1}{1,96x^2}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow\dfrac{74}{49x^2}=\dfrac{1}{225}\\ \Rightarrow49x^2=16650\\ \Rightarrow x^2=\dfrac{16650}{49}\\ \Rightarrow x=18,43\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHB\)
\(\Rightarrow HB^2=\sqrt{AB^2-AH^2}=\sqrt{18,33^2-15^2}=10,54\left(cm\right)\)
Áp dụng định lý \(Py-ta-go\) vào \(\Delta AHC\)
\(\Rightarrow HC^2=\sqrt{AC^2-AH^2}=\sqrt{\left(1,4\cdot18,33\right)^2-15^2}=20,82\left(cm\right)\)
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)
Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!
Chúc bạn học thật tốt!:))
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\)
\(\Rightarrow\dfrac{BH.BC}{HC.BC}=\dfrac{25}{36}\Rightarrow BH=\dfrac{25}{36}HC\)
Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow30^2=\dfrac{25}{36}HC.HC\Rightarrow HC^2=1296\Rightarrow HC=36\left(cm\right)\)
\(\Rightarrow BH=\dfrac{25}{36}HC=25\left(cm\right)\)