K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian hoàn thành công việc khi làm một mình của người 1 và người 2 lần lượt là a,b

Trong 1h,người 1 làm được 1/a(công việc)

Trong 1h, người 2 làm được 1/b(công việc)

Theo đề, ta có:

1/a+1/b=1/(5+5/6) và 5/a+7/b=1

=>1/a+1/b=6/35 và 5/a+7/b=1

=>a=10 và b=14

24 tháng 2 2019

Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)

Trong 1h người 1 làm được 1/x công việc

Trong 1h người 2 làm được 1/y công việc 

Trong 1h 2 người làm chung được 1/16 công việc 

Ta có pt1:  1/x   +   1/y  =   1/16

Trong 3h người 1 làm được 3/x công việc

Trong 6h người 2 làm được 6/y công việc

Ta có pt2:   3/x    +     6/y      =1/4

DONE

Hệ bạn tự giải nha

27 tháng 1 2022

Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)

Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.

2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)

Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)

Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)

Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h

6 tháng 2 2016

Dễ thế ,mà thôi bấm Hai đội công nhân cùng làm một công việc thì hoàn thành công việc đó trong 12 ngày. hai đội làm chung trong 4 ngày thì đội thứ 1 bị điều đi làm việc khác. Đội 2 làm nốt phần công việc còn lại trong 10 ngày. Hỏi đội 2 làm riêng thì bao nhiêu ngày sẽ xong công việc đó?

Rồi bấm Đúng 0 nha Nguyen Tri Dung

6 tháng 2 2016

Goi X la thoi gian lam rieng cong viet cua nguoi thu nat

Y la thoi gian lam rieng cong viet cUA NGUOI 2

 ta co hept

1*20/X+1*20/Y=1

va1*18/X +1*24/Y=1

giai hpt ta duoc X=30 H

Y=60h 

vay .......

Gọi thời gian làm riêng của người thứ nhất và thứ hai lần lượt là x,y

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{y}=\dfrac{67}{60}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>Đề sai rồi bạn

1 tháng 6 2018

Gọi x (giờ) là thời gian DCSX 1 làm riêng để xong công việc

      y (giờ) là thời gian DCSX 2 làm riêng để xong công việc

Điều kiện : x,y > 12

Trong một giờ, DCSX 1 làm được là : 1/x (công việc)

Trong một giờ, DCSX 2 làm được là : 1/y (công việc)

Vì cả 2 DCSX của nhà máy làm chung đã hoàn thành công việc sau 12h nên ta có phương trình :

1/x + 1/y = 1/12 (1)

Vì nếu làm riêng thì DCSX 1 làm chậm hơn DCSX 2 là 7h để xong công việc nên ta có phương trình :

y - x = 7 (2)

Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\y-x=7\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{x+7}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x+7}{x\left(x+7\right)}+\frac{x}{x\left(x+7\right)}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{2x+7}{x^2+7x}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}12\left(2x+7\right)=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}24x+84=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2+7x-24x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-17x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\orbr{\begin{cases}x_1=21\left(nh\text{ậ}n\right)\\x_2=-4\left(l\text{oại}\right)\end{cases}}\\y=21+7=28\end{cases}}\)\(\hept{\begin{cases}x=21\\y=28\end{cases}}\left(tm\right)\)

Vậy DCSX 1 làm riêng thì sau 21h sẽ xong công việc

DCSX 2 làm riêng thì sau 28h sẽ xong công việc

2 tháng 6 2018

bạn làm sai rồi nhìn đầu bài đi

cảm ơn bạn

22 tháng 1 2016

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)

19 tháng 5 2022

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)

25 tháng 8 2016

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc  trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, người thứ hai \(\frac{1}{y}\) công việc, cả hai người cùng làm chung thì được \(\frac{1}{16}\) công việc.

Ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\) +  = .

Trong 3 giờ, người thứ nhất làm được \(\frac{3}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\) công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\) công việc.

Ta được \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)

Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}\).

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ

 

13 tháng 2 2019

Gọi thời gian người thứ nhất làm một mình để hoàn thành công việc là x (giờ) (x > 0).

Gọi thời gian người thứ hai làm một mình để hoàn thành công việc là y (giờ) y > 0).

Vì cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình

\(16\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành \(25\%=\dfrac{1}{4}\) công việc nên ta có phương trình: \(3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{x}+3.\dfrac{1}{y}=\dfrac{3}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}=\dfrac{1}{24}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=48\left(TM\right)\\x=24\left(TM\right)\end{matrix}\right.\)

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.