Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Gọi số dãy ghế ban đầu là x (dãy) (x>0)
=> số ghế của 1 dãy ban đầu là 120/x (ghế)
Khi kê thì kê được: x+2 (dãy) và số ghế 1 dãy là: 120/(x+2)
Ta có phương trình:
120x−120x+2=2⇒1x−1x+2=2120⇒x+2−xx(x+2)=160⇒60.2=x2+2x⇒x2+2x−120=0⇒x=10(do:x>0)120x−120x+2=2⇒1x−1x+2=2120⇒x+2−xx(x+2)=160⇒60.2=x2+2x⇒x2+2x−120=0⇒x=10(do:x>0)
Vậy trước khi sửa thì rạp có 10 dãy ghế.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
bài mẫu nè:
gọi số dãy ghế là x, số ghê là y
theo đb ta có hpt
(x-2)(y+2)=288
xy=288
giải pt tìm đk x=18; y=16
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)
\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)
số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế)
số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)
ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2
\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2
\(\Leftrightarrow\)-2x\(^2\)+57x-302=0
\(\Leftrightarrow\)2x\(^2\)-57x+302=0
giải phương trình bậc hai
đối chiếu điều kiện
kết luận
gọi x và y lần lượt là số dãy ghs và số ghế trong một dãy
Do đó x,y là hai số tự nhiên khác 0
ta có hệ sau
\(\hept{\begin{cases}x.y=320\\\left(x+1\right)\left(y+4\right)=420\end{cases}\Leftrightarrow}\hept{\begin{cases}x.y=320\\xy+4x+y+4=420\end{cases}\Leftrightarrow\hept{\begin{cases}x.y=320\\4x+y=96\end{cases}}}\)
Rút \(y=96-4x\Rightarrow96x-4x^2=320\Leftrightarrow\orbr{\begin{cases}x=20\Rightarrow y=16\\x=4\Rightarrow y=40\end{cases}}\)
Vậy có hai khả năng xảy ra như trên
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có 240x240xghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> (240x+1)(x+3)=315⇔240+720x+x+3=315(240x+1)(x+3)=315⇔240+720x+x+3=315
⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0
Δ′=(−36)2−720=576Δ′=(−36)2−720=576
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!
Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2
Số ghế mỗi dãy lúc đầu là 210/x(ghế)
dãy ghế lúc sau là x+2(dãy ghế)
Số ghế mỗi dãy lúc sau là 272/x+2(ghế)
Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:
(210/x)-(272/x+2)+2=0(1)
Giải pt (1) ta có: x1=15(TM),x2=14(TM)
Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)
Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)
Gọi số dãy ghế lúc ban đầu là x(dãy)
(Điều kiện: \(x\in Z^+\))
Số người ngồi trên 1 dãy ghế ban đầu là \(\dfrac{80}{x}\left(người\right)\)
Số dãy ghế khi bớt đi 2 dãy là x-2(dãy)
Số người ngồi trên 1 dãy ghế khi bớt đi 2 dãy ghế là \(\dfrac{80}{x-2}\left(người\right)\)
Theo đề, ta có phương trình:
\(\dfrac{80}{x-2}-\dfrac{80}{x}=2\)
=>\(\dfrac{80x-80\left(x-2\right)}{x\left(x-2\right)}=2\)
=>\(\dfrac{160}{x\left(x-2\right)}=2\)
=>x(x-2)=80
=>\(x^2-2x-80=0\)
=>(x-10)(x+8)=0
=>\(\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(loại\right)\end{matrix}\right.\)
Vậy: Số dãy ghế ban đầu là 10 dãy
Số người ngồi trên 1 dãy ban đầu là 80:10=8 người
Gọi số ghế là dãy ghế là x
số ghế trong 1 dãy là y
+) \(\hept{\begin{cases}x.y=120\\\left(x+2\right).\left(y-2\right)=120\end{cases}\left(x,y>0\right)}\)
+)\(\hept{\begin{cases}x.y=120\\x.y+2.y-2.x-4=120\end{cases}}\)
+) 2.y - 2.x = 4 <=> y- x = 2
=> y = x + 2
=> x . ( x + 2 ) =120
<=> x2 + 2.x - 120 = 0
<=> \(\orbr{\begin{cases}x=10\\x=-12\left(L\right)\end{cases}}\)=> ta có 10 dãy
=> y = 12