K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)

thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)

(Điều kiện: x>12; y>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)

Vì khi tổ 1 làm một mình trong 2 giờ và tổ 2 làm một mình trong 7 giờ thi hai tổ làm được một nửa công việc nên ta có phương trình:

\(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình

5 tháng 7 2021

Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)

  y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)

 

Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:

12x+12y=1  (1)

nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên

10x+3y=7/12 (2)

(1),(2) ta có hệ phương trình:

12x+12y=1

10x+3y=7/12

⇒x=1/21(TM); y=1/28(TM)

 

Vậy  Tổ (I)làm một mình trong 21h thì xong công việc.

Tổ (II) làm một mình trong 28h thì xong công việc.

9 tháng 6 2021

Gọi khối lượng công việc của tổ 1 và 2 làm được trong 1h là a,b(phần công việc).Gọi x là tổng khối lượng của việc cần hoàn thành \(\left(x,a,b>0\right)\)

Theo đề:Để....trong 6h \(\Rightarrow6\left(a+b\right)=x\left(1\right)\)

Sau 2h làm chung...trong 10h \(\Rightarrow2\left(a+b\right)+10a=x\)

\(\Rightarrow6a+6b=2a+2b+10a\Rightarrow4b=6a\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}b\\b=\dfrac{3}{2}a\end{matrix}\right.\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}6\left(a+\dfrac{3}{2}a\right)=x\\6\left(\dfrac{2}{3}b+b\right)=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15a=x\\10b=x\end{matrix}\right.\)

\(\Rightarrow\) tổ 1 làm xong trong 15 ngày,tổ 2 làm xong trong 10 ngày

9 tháng 6 2021

Gọi x,y lần lượt là phần công việc tổ 1 và tổ 2 làm đc trong 1h.(x,y>0)

Vì để hoàn thành 1 công việc 2 tổ phải làm trong 6h nên ta có pt:   6x+6y=1  (1)

Vì sau 2h làm chung thì tổ 2 đc điều đi lm việc khác, tổ 1 đã hoàn thành xong công việc còn lại trong 10h nên ta có pt:    2x+2y+10y=1⇔ 12x+2y=1  (2)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}6x+6y=1\\12x+2y=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}12x+12y=2\\12x+2y=1\end{matrix}\right.\)

                                    ⇔\(\left\{{}\begin{matrix}6x+6y=1\\10y=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}6x+6.\dfrac{1}{10}=1\\y=\dfrac{1}{10}\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{1}{15}\left(nhận\right)\\y=\dfrac{1}{10}\left(nhận\right)\end{matrix}\right.\)

Vậy thời gian tổ 1 làm riêng là: \(1:\dfrac{1}{15}=15\left(h\right)\)

       thời gian tổ 2 làm riêng là:  \(1:\dfrac{1}{10}=10\left(h\right)\)

5 tháng 7 2021

Tham khảo:
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)

  y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)

 

Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:

12x+12y=1  (1)

nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên

10x+3y=7/12 (2)

(1),(2) ta có hệ phương trình:

12x+12y=1

10x+3y=7/12

⇒x=1/21(TM); y=1/28(TM)

 

Vậy  Tổ (I)làm một mình trong 21h thì xong công việc.

Tổ (II) làm một mình trong 28h thì xong công việc.

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

Giả sử tổ 1 và tổ 2 làm 1 mình thì lần lượt trong $a$ và $b$ sẽ xong công việc. ĐK: $a,b>0$.

Trong 1 giờ thì:

Tổ 1 làm được $\frac{1}{a}$ công việc

Tổ 2 làm được $\frac{1}{b}$ công việc

Ta có: 

\(\left\{\begin{matrix} 12(\frac{1}{a}+\frac{1}{b})=1\\ \frac{3+7}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{12}{a}+\frac{12}{b}=1\\ \frac{10}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{21}\\ \frac{1}{b}=\frac{1}{28}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=21\\ b=28\end{matrix}\right.\) (thỏa mãn)

Vậy....

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)

Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)

Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)

Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)

Từ (1) và (2) ta có hpt:

(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

Giải hpt:

(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)

Vậy tổ 1 làm một mình trong 60h thì xong công việc đó

tổ 2 làm một mình trong 15h thì xong công việc đó

Chúc bn học tốt!

 

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: 1x1x (Công việc)

Một giờ tổ 2 làm được: 1y1y (Công việc)

Một giờ cả hai tổ làm được: 112112 (Công việc)

Vì một giờ cả hai tổ làm được 112112 công việc nên ta có pt:

1x+1y=1121x+1y=112 (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: 4x4x (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: 4y+10y=14y4y+10y=14y (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

4x+14y=14x+14y=1 (2)

Từ (1) và (2) ta có hpt:

(I) ⎪ ⎪ ⎪⎪ ⎪ ⎪1x+1y=1124x+14

12 tháng 3 2020

em đéo biết

4 tháng 2 2021

Gọi x là lượng công việc mà tổ (I) làm trong 1hy là lượng công việc mà tổ (II) làm trong 1h

Mà tổ (I) và (II) cùng làm với nhau trong 12h thì xong 11 công việc nên ta có phương trình:

12(x+y)=112(x+y)=1  (1)

Mặt khác 2 tổ cùng làm trong 4h thì tổ (I) đi làm việc khác và tổ (II) làm nốt trong 10h nữa thì xong công việc nên ta có phương trình:

4(x+y)+10y=14(x+y)+10y=1  (2)

Kết hợp phương trình (1) và phương trình (2) ta có hệ phương trình:

12(x+y)=1

4(x+y)+10y=1

 

Giải HPT ta được x=1/ 60 và y=1/15

⇒⇒  Tổ (I) làm một mình trong 60h thì xong công việc.

Tổ (II) làm một mình trong 15h thì xong công việc.

Bn tham khảo nha

Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)

Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:

\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)

\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng