K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Bn có làm đc bài 1 ko

25 tháng 1 2018

Tham khảo :

hai vòi nước cùng chảy vào một cái bể không có nước,trong 4h48' sẽ đầy bể.nếu mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước.hỏi mỗi vòi khác chảy thì trong bao lâu mới đầy bể?

 Gọi năng suất vòi 1 là x (x>0) (năng suất ở đây hiểu là sau 1 giờ thì vòi 1 chảy được 1 lượng nước nào đó). Gọi năng suất vòi 2 là y (y>0) => năng suất chung cả hai vòi là x+y. Do sau 4,8 giờ (4h48') thì 2 vòi chảy cùng đầy bể nên 1 giờ thì 2 vòi chảy được lượng nước là 1/4,8 bể = 5/24 bể => x+y =5/24 (1). Do mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước nên ta có phương trình 3x+4y=3/4 (bể) (2), từ (1) và (2) => ta có hệ phương trình x+y =5/24 và 3x+4y=3/4. Giải hệ phương trình này ta được x=1/12 và y=1/8. => thời gian chảy đẩy bể của vòi 1 là 1/x = 12h, và tương tự thì vòi 2 là 8h

13 tháng 3 2021

Gọi một giờ vòi một chảy đc a phần bể

Vòi 2 chảy được b phần bể

Ta có

\(\left\{{}\begin{matrix}3a+3b=1\\2a+4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a+6b=2\\6a+12b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6b=1\\3a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{3}\\a=\dfrac{1}{3}\end{matrix}\right.\)

Vậy vòi 1 và vòi 2 đều chảy một mình 6h thì đẩy bể

7 tháng 2 2022

Gọi thời gian chảy riêng để đầy bể của vòi I, vòi II lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hpt \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{12}\\\frac{8}{a}+\frac{8}{b}+\frac{\left(3+\frac{1}{2}\right).2}{b}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{28}\\\frac{1}{b}=\frac{1}{21}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=21\end{cases}}\)

Vậy ... 

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)(Điều kiện: x>4)

Gọi thời gian vòi thứ hai chảy một mình đẩy bể là y(giờ)(Điều kiện: y>4)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, 2 vòi chảy được: \(\dfrac{1}{4}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)

Theo đề, ta có phương trình: \(\dfrac{9}{x}+\dfrac{1}{y}=1\)(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{9}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-8}{x}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{3}{32}=\dfrac{5}{32}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\y=\dfrac{32}{5}\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần \(\dfrac{32}{3}h\) để chảy một mình đầy bể

Vòi 2 cần \(\dfrac{32}{5}h\) để chảy một mình đầy bể

18 tháng 5 2021

 Gọi thời gian mà vòi thứ nhất và vòi thứu hai chảy một mình đẩy bể lần lượt là x, y (giờ)

Vì hai vòi cùng chảy vào một cái bể không có nước thì trong 12 giờ thì sữ đầy bể nên:

12x+12y=112x+12y=1

Mặt khác, Nếu chỉ mở vòi thứ nhất trong 4h rồi mở vòi thứ 2 chảy trong 6h thì chỉ được hai phần năm bể nên ta có:

4x+6y=254x+6y=25

Suy ra, ta có hệ phương trình:

{12x+12y=14x+6y=25⇔{x=20x=30{12x+12y=14x+6y=25⇔{x=20x=30

Vậy, thời gian mà vòi thứ nhất và vòi thứ hai chảy một mình đẩy bể lần lượt là 20 giờ, 30 giờ

  

Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là x(giờ) và y(giờ)

(Điều kiện: x>0 và y>0)

Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{15}\left(bể\right)\)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\left(1\right)\)

Trong 5 giờ, vòi 1 chảy được \(\dfrac{5}{x}\left(bể\right)\)

Trong 3 giờ, vòi 2 chảy được \(3\cdot\dfrac{1}{y}=\dfrac{3}{y}\left(bể\right)\)

nếu vòi 1 chảy trong 5 giờ và vòi 2 chảy trong 3 giờ được 30% bể nước nên \(\dfrac{5}{x}+\dfrac{3}{y}=30\%=\dfrac{3}{10}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{1}{3}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{y}=\dfrac{1}{3}-\dfrac{3}{10}=\dfrac{1}{30}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=60\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{60}=\dfrac{3}{60}=\dfrac{1}{20}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=60\\x=20\end{matrix}\right.\left(nhận\right)\)

Vậy: Thời gian chảy riêng đầy bể của vòi 1 là 20 giờ, của vòi 2 là 60 giờ