K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

cái gì vậy bạn

17 tháng 9 2020

? bài ở đâu

22 tháng 6 2021

Ps : Bn tự vẽ hình nhé, mk chỉ giải thôi ạ.

a)   Xét \(\Delta ABC\)và \(\Delta HAB\)

\(\widehat{BAC}=\widehat{BHA}=90^O\)

\(\widehat{ABC}chung\)

\(\Rightarrow\Delta ABC~\Delta HBA\)( g - g )

b)  Xét \(\Delta AHD\)và \(\Delta CED\)

\(\widehat{AHD}=\widehat{CED}=90^O\)

\(\widehat{ADH}=\widehat{CDE}\)( đối đỉnh )

\(\Rightarrow\Delta AHD~\Delta CED\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AD}=\frac{CE}{CD}\Rightarrow AH.CD=AD.CE\)

c) Vì H là trung điểm của BD mà \(AH\perp BD\)

=> AH là đường trung trực của BD

\(\Rightarrow AB=AD\)

Mà : \(\frac{AH}{AD}=\frac{CE}{CD}\)

\(\Rightarrow\frac{AH}{AB}=\frac{CE}{CD}\)

Vì \(\Delta ABC~\Delta HBA\Rightarrow\frac{AH}{AB}=\frac{CA}{CB}\)

Do đó : \(\frac{CE}{CD}=\frac{CA}{CB}=\frac{8}{10}=\frac{4}{5}\)

Vì \(\Delta CED\)vuông 

\(\Rightarrow S_{CED}=\frac{CE.ED}{2}\)

\(AB//FK\Rightarrow\widehat{BAH}=\widehat{KFH}\)

                       \(\widehat{AHB}=\widehat{FHK}=90^O\)

                        \(BA=HD\)

\(\Rightarrow\Delta AHB=\Delta FHK\)

\(\Rightarrow HA=HF\)mà \(CH\perp AF\)

=> CH là đường trung trực AF \(\Rightarrow\Delta ACF\)cân tại C

Do đó : D là trọng tâm \(\Delta ACF\)

\(\Rightarrow CD=\frac{2}{3}CH\)

Mà \(\cos ACB=\frac{AC}{BC}=\frac{CH}{CA}=\frac{4}{5}\Rightarrow CH=\frac{32}{5}\Rightarrow CD=\frac{64}{15}\)

\(\Rightarrow\frac{CE}{CD}=\frac{4}{5}\Rightarrow CE=\frac{256}{75}\)

\(ED=\sqrt{CD^2-CE^2}=\frac{64}{25}\)

\(\Rightarrow S_{CED}=\frac{8192}{1875}\)

d)    Vì \(\Delta ACF\)cân tại C  \(\Rightarrow KE//AF\Rightarrow\widehat{EKF}=\widehat{AFK}\)

        Vì  HK là trung tuyến \(\Delta AFK\)\(\Rightarrow\widehat{AFK}=\widehat{HKF}\)

Do đó : \(\widehat{HKF}=\widehat{EKF}\)

=> KD là phân giác \(\widehat{HKE}\)

                                                                                                                                                           # Aeri # 

13 tháng 3 2020

MỌI NGƯỜI GIÚP MIK NHA!

13 tháng 3 2020

ĐỀ ĐÂY Ạ

11 tháng 12 2019

Em ơi thiếu đề rồi. Em kiểm tra lại nhé!

21 tháng 4 2020

ko hieu

1 tháng 7 2016

b. \(\sqrt{\frac{180}{5}}-\sqrt{\frac{48}{75}}=\sqrt{36}-\sqrt{\frac{16}{25}}=6-\frac{4}{5}=\frac{26}{5}\)

14 tháng 6 2018

bn ra đề bài đi chứ

14 tháng 6 2018

Đề bài bn ơi

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)