Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(2x+1\right)^2\ge0.Với\forall x\in Z\)
\(\left|y-1,2\right|\ge0.Với\forall y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(2x+1\right)^2=0\\\left|y-1,2\right|=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=-1\\y=1,2\end{cases}}\Rightarrow x=\frac{-1}{2}\)
Vậy ta có :\(x=-\frac{1}{2}\)và \(y=1,2\)
\(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\Rightarrow x^2=6\frac{1}{4}.1,96\)
\(\Rightarrow x^2=\frac{25}{4}.\frac{49}{25}\)
\(\Rightarrow x^2=\frac{49}{4}\)
\(\Rightarrow x^2=\left(\frac{7}{2}\right)^2\)
\(\Rightarrow x=\frac{7}{2}\)
vậy \(x=\frac{7}{2}\)
Ta có : \(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\Rightarrow\frac{6,25}{x}=\frac{x}{1,96}\)
\(\Rightarrow\frac{6,25.1,96.x}{x.1,96}=\frac{x.x}{1,96.x}\)
\(\Rightarrow6,25.1,96.x=x.x\)
\(\Rightarrow12,25.x=x.x\)
Vì \(x=x\)nên để \(12,25.x=x.x\)thì \(12,25=x\)
Vậy \(x=12,25\)
Câu 1:
\(x^3< 0\Rightarrow x< 0\)
Mà \(\left|x\right|=2015\)
\(\Rightarrow x=-2015\)
Vậy x = -2015
Câu 3:
\(x^3>0\Rightarrow x>0\)
Mà \(\left(x+3\right)^2=25\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
Vậy x = 2
Câu 4:
\(\frac{x}{5}=\frac{20}{x}\Rightarrow x^2=100\Rightarrow x=\pm10\)
Vậy \(x=\pm10\)
Câu 8:
\(\left(-36\right)^{1000}:9^{1000}=2^n\)
\(\Rightarrow\left(-36:9\right)^{1000}=2^n\)
\(\Rightarrow\left(-4\right)^{1000}=2^n\)
\(\Rightarrow2^{2000}=2^n\)
\(\Rightarrow n=2000\)
Vậy n = 200
Câu 9:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Rightarrow\frac{4-8y}{32}=\frac{5}{x}\)
\(\Rightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Rightarrow\left(1-2y\right)x=40\)
Ta có bảng sau:
...
\(\frac{x}{-4}=\frac{-9}{x}\)
\(\Rightarrow x.x=\left(-9\right).\left(-4\right)\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy \(x\in\left\{6;-6\right\}\)
Ta có :
\(-4\times\left(-9\right)=36.\)
Mà \(x\times x=36\)
Mà \(-6\times-6=36\)
\(6\times6=36\)
\(\Rightarrow x=\left\{6;-6\right\}\)
Ta có : \(\frac{2x}{42}=\frac{28}{3x}\)
\(\Rightarrow2x\times3x=42\times28\)
\(\Rightarrow6\times x^2=1176\)
\(\Rightarrow x^2=1176:6\)
\(\Rightarrow x^2=196\)
\(\Rightarrow x=14\)
Vậy \(x=14.\)
Câu 1: thay vào rồi tính, số âm mũ chẵn -> dương
Câu 2:
\(\frac{15}{x}=\frac{3}{5}\)
\(\Rightarrow3x=15.5\)
\(\Rightarrow x=5.5\)
\(\Rightarrow x=25\)
Vậy x = 25
Câu 4:
\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-\frac{1}{3}\end{matrix}\right.\)
Mà \(x\in Z\Rightarrow x=1\)
Vậy x = 1
Câu 6:
Thay y = 0 ta có:
\(0=5x^5+10x^4\)
\(\Rightarrow5x^4\left(x+2\right)=0\)
\(\Rightarrow\left[\begin{matrix}5x^4=0\\x+2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{0;-2\right\}\)
Câu 5:
Vì \(\left(x+2\right)^2+5>0\) nên để A lớn nhất thì \(\left(x+2\right)^2+5\) nhỏ nhất.
Ta có: \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\)
\(\Rightarrow A=\frac{10}{\left(x+2\right)^2+5}\le\frac{10}{5}=2\)
Vậy \(MAX_A=2\) khi x = -2
Câu 10:
Ta có: \(\left\{\begin{matrix}xy=24\\yz=12\\zt=36\\xt=2\end{matrix}\right.\Rightarrow x.y.y.z.z.t.x.t=24.12.36.2=20736\)
\(\Rightarrow x^2.y^2.z^2.t^2=20736\)
\(\Rightarrow\left(xyzt\right)^2=20736\)
\(\Rightarrow xyzt=\pm144\)
Câu 2:
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x+2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó: \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\)
Vậy \(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\).
Câu 3:
x.x=64=>x=8 hoặc x=-8 mà x.x.x<0 =>x<0
Vậy x=-8
Câu 5:
ta có: nghiệm của đa thức f(x)=x^4 - 16 =0
=> x^4 = 16
=> x= 2 hoặc x= -2
Câu 6:
ta có: f(x1) + f(x2) = 2.x1 + 3 + 2.x2 +3
= 2.(x1 + x2) + 3+ 3
=2.5+6
=16
vậy f(x1) + f(x2)=16
Câu 7:
vì đa thức f(x) =a.x + b có nghiệm x = 1
=> a.1 + b = 0
=> a+b=0 (1)
vì f(0) =5 => a.0+b= 5
=> 0+b = 5
=> b = -5
từ (1) ta có: a+ (-5)=0
=>a=5
vậy a=5 và b=-5
\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\)\(\Rightarrow x=1\left(x\in Z\right)\)
x=1 hoặc x=-1/3