K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Bài này chỉ tìm được GTNN thôi .

10 tháng 12 2016

À nhầm, hình như vẫn tìm GTLN bằng 1 tại x = 90 độ.

 

18 tháng 9 2020

\(\sin^4x+\cos^4x=1-2\sin^2x\cos^2x=1-\frac{1}{2}\sin^22x\)

Có : \(0\le\sin^22x\le1\)

\(\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

vậy \(_{\max\limits=1}\)

11 tháng 12 2016

\(Max=\frac{5}{4}\) khi \(x=-\frac{\pi}{6}+2k\pi\)

11 tháng 12 2016

sao bn lại ra được max=\(\frac{5}{4}\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là? 2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là? 3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\) 4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là? 5. Nghiệm...
Đọc tiếp

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

11
16 tháng 8 2020

Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?

NV
16 tháng 8 2020

Vì mình lấy giá trị nguyên bạn

Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)

\(\Rightarrow-0,25< k< 321,243\) (1)

Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)