Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Rightarrow\frac{x}{2015}-\frac{x}{2017}=0\)
\(\Rightarrow x.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Mà ta thấy \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow x=0\)
Vậy \(x=0\)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Leftrightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Leftrightarrow x\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\).Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
Vậy giá trị của x là x=0
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
<=>\(\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Vì \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow\left|x\right|=0\Rightarrow x=0\)
Vậy x=0
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
\(\Rightarrow\left|x.\left(\frac{1}{2015}+\frac{1}{2016}\right)\right|=\left|x.\left(\frac{1}{2016}+\frac{1}{2017}\right)\right|\)
\(\Rightarrow\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
Mà \(\frac{1}{2015}+\frac{1}{2016}>\frac{1}{2016}+\frac{1}{2017}\)
=> |x| = 0
=> x = 0
Vậy x = 0
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
\(=\left(\left|x-2015\right|+\left|2018-x\right|\right)+\left(\left|x-2016\right|+\left|2017-x\right|\right)\)
\(\ge\left|x-2015+2018-x\right|+\left|x-2016+2017-x\right|\)
\(=4\)
Dấu \(=\)khi \(2016\le x\le2017\).
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
=>\(\frac{x}{2015}=\frac{x}{2017}\)
Vì 2015 khác 2017. Nên x=0
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
\(\frac{x}{2015}+\frac{x}{2016}+\frac{x}{2017}-\frac{x}{2018}\)\(=0\)=> \(x\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Dễ thấy biếu thức trong ngoặc khác 0 nên \(x=0\).