K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

Bài 1:

\(M=\left|x+13\right|+64\)

Vì \(\left|x+3\right|\ge0\)

=> \(\left|x+3\right|+64\ge64\)

Vậy GTNN của M là 64 khi x=-13

\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|-x-3+x+5\right|=2\)

Vaayj GTNN của A là 2 khi \(-3\le x\le5\)

Bài 2:

a) \(\left(x+10\right)^2=0\)

\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )

\(\Leftrightarrow x=11\)

11 tháng 9 2016

Bài 1:

a)Ta thấy: \(\left|x+13\right|\ge0\)

\(\Rightarrow\left|x+13\right|+64\ge64\)

\(\Rightarrow M\ge64\)

Dấu = khi x=-13

b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)

\(\Rightarrow A\ge2\)

Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)

\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

4 tháng 9 2017

Trả lời giùm mk vs các bn ạ

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

11 tháng 9 2016

\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)

\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)

\(\Leftrightarrow1+2+3+4+..+x=15\)

\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)

\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)

Vậy x=5

Bài 2:

Bậc của đơn thức là 2+5+3=10

Bài 3:

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)

+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành

\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+)TH2: \(x< \frac{1}{4}\) thì pt trở thành

\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)

Vậy x={-9/4;11/4}

21 tháng 10 2021

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)

\(=x^2-8x+16-x^2-8x-16-16x+32\)

\(=-32x+32\)

Biểu thức phụ thuộc vào giá trị của biến

21 tháng 10 2021

b) \(\left(x-3\right)^3-\left(x+3\right)^3+12\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+9x^2+27x+27\right)+12x^2-12\)

\(=-6x^2-66\)

Biểu thức này phụ thuộc vào giá trị của biến

29 tháng 2 2020

1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)

2, để B<0 <=> (x2+1)(1-x)<0

vì x^2+1 > 0 với mọi x

=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)

3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)

Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2