Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{2}=\frac{b}{3},\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a}{8}=\frac{b}{12},\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)(T/C)
\(\Rightarrow b=\frac{3}{5}\cdot12=\frac{36}{5}\)
Giải:
Ta có: \(a:2=b:3\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\)
\(b:4=c:5\Rightarrow\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{31}\)
+) \(\frac{b}{12}=\frac{21}{31}\Rightarrow b=\frac{252}{31}\)
Vậy \(b=\frac{252}{31}\)
GiảiTa có a/2=b/3 =>a/8=b/12
b/4=c/5 =>b/12=c/15
=>a/8=b/12=c/15=a+b+c/8+12+15=3/5 (tính chất dãy tỉ số bằng nhau)
=>a=3/5x8=24/5
tương tự b ; c bạn tự làm nhé
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
a=2009,b=2010,c=2011
M=4(2009-2010)(2010-2011)=(2009-2011)^2=4
Đặt \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=k\)
=>a=2009k;b=2010k;c=2011k
Xét \(4\left(a-b\right)\left(b-c\right)=4\left(2009k-2010k\right)\left(2010k-2011k\right)\)
\(=4\left(-k\right)\left(-k\right)=4k^2\left(1\right)\)
Xét \(\left(c-a\right)^2=\left(2011k-2009k\right)^2=\left(2k\right)^2=4k^2\left(2\right)\)
Từ (1) và (2)
=>4(a-b)(b-c)=(c-a)2=4k2
Hay M=4k2
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5} \Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng ...., ta có
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)
\(\Rightarrow a=\frac{3}{5}.8=\frac{24}{5}\)
\(b=\frac{3}{5}.12=\frac{36}{5}\)
\(c=\frac{3}{5}.15=\frac{45}{5}=9\)
a+b+c=21