Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tồn tại x1 ; x2=> k thuôc (-vc;-2]U[2;vc)
tồn tại x1,2<>0 ; f(0)<>0<=> luôn đúng => k thuôc (-vc;-2]U[2;vc)
\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2\)
\(A=\left(\dfrac{x^2_1+x^2_2}{x_1.x_2}\right)^2-2=\left(\dfrac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}\right)^2-2\)
\(A\ge3\Leftrightarrow\left(\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\right)^2\ge5\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\ge\sqrt{5}\left(1\right)\\\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\le-\sqrt{5}\left(2\right)\end{matrix}\right.\)
(1) \(\dfrac{\left(2k\right)^2}{4}\ge2+\sqrt{5}\Leftrightarrow k^2\ge2+\sqrt{5}\Rightarrow k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)
(2)<=> \(\dfrac{\left(2k\right)^2}{4}\le2-\sqrt{5}\Leftrightarrow k^2\le2-\sqrt{5}\left(l\right)\)
kết hợp nghiệm \(k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)
\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)
Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định
\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)
\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)
\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)
\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)
\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)
Thay vào B:
\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)
\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)
Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)
\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
Ta có để phương trình có nghiệm thì:
\(\Delta=k^2-4\ge0\)
\(\Leftrightarrow k\ge2;k\le-2\)
Theo đề thì ta có
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\ge3\)
\(\Leftrightarrow x_1^4+x_2^4-3\left(x_1x_2\right)^2\ge0\)
\(\Leftrightarrow\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-5x_1x_2\ge0\)
\(\Leftrightarrow\left(4k^2-4\right)^2-5.4^2\ge0\)
Làm nốt
\(\left|k\right|\ge2\)
\(P=\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left(\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2\right)^2-2\\ \)
\(P=\left(\frac{\left(2k\right)^2}{4}-2\right)^2-2=\left(k^2-2\right)^2-2\)
\(P\ge3\Rightarrow\left(k^2-2\right)^2\ge5\Leftrightarrow\orbr{\begin{cases}k^2-2\le-\sqrt{5}\left(l\right)\\k^2-2\ge\sqrt{5}\left(n\right)\end{cases}}\)
\(\orbr{\begin{cases}k\le-\sqrt{2+\sqrt{5}}\\k\ge\sqrt{2+\sqrt{5}}\end{cases}}\)