Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này nhiều bạn đăng rồi, vô lục câu hỏi của CTV Lê Tài Bảo Châu đó, kéo xuống là thấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)
\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)
\(=2x^2y^2+x^4y^4-40xy+101\)
\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)
\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)
mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)
=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
Bị nhầm
Làm lại: Mọi lập luận theo trước
\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{\left(\sqrt{10}\right)^2}{2}=\frac{10}{2}=5\) Nhầm chỗ này!!
Kết luận
Pmin=5^2=25 đẳng thức khi \(x=y=\frac{\sqrt{10}}{2}\)
Bunyacokovski ta có
\(P=\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)
đẳng thức khi \(\frac{x^2}{y^2}=\frac{1^2}{1^2}=1\Rightarrow x^2=y^2\) (1)
Ta cũng có
\(2.\left(x^2+y^2\right)=\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\left(x^2+y^2\right)\ge2.\left(x+y\right)^2=2.\left(\sqrt{10}\right)^2=20\)
đẳng thức khi : \(\frac{1}{x}=\frac{1}{y}\) (2)
Từ (1) (2)
Kết luận: Pmin=20 đạt tại x=y=\(\frac{\sqrt{10}}{2}\)
\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)
\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)
\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi xy=2
Lại có \(x+y=\sqrt{10}\)
\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)
\(\Rightarrow y^2-\sqrt{10y}+2=0\)
Ta có \(\Delta=10-8=2\)
\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)