Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $a,b,c$ lập thành csc thì $b=a+m, c=a+2m$ với $m$ là công sai.
Khi đó:
$3(a^2+b^2+c^2)-6(a-b)^2=3[a^2+(a+m)^2+(a+2m)^2]-6(a-a-m)^2$
$=3(a^2+a^2+m^2+2am+a^2+4m^2+4am)-6m^2$
$=3(3a^2+5m^2+6am)=9a^2+15m^2+18am-6m^2$
$=9a^2+9m^2+18am$
$=9(a^2+m^2+2am)=9(a+m)^2=(3a+3m)^2$
$=(a+a+m+a+2m)^2=(a+b+c)^2$ (đpcm).
a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).
b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.
Do a;b;c;d là 1 cấp số nhân \(\Rightarrow\left\{{}\begin{matrix}ad=bc\\ac=b^2\\bd=c^2\end{matrix}\right.\)
\(\left(b-c\right)^2+\left(c-a\right)^2+\left(d-b\right)^2\)
\(=b^2+c^2-2bc+c^2+a^2-2ca+d^2+b^2-2bd\)
\(=ac+bd-2ad+bd+a^2-2ca+d^2+ac-2bd\)
\(=a^2-2ab+d^2=\left(a-d\right)^2\)
gọi a,b,c là 3 cạnh của tam giác.
Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)
<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)
<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)
<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)
<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)
<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)
<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)
<=> a+c =2b
=> 3 cạnh của tam giác tạo thành cấp số cộng.
a) Vì \(P\left(A\cap B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)\) nên
\(\dfrac{P\left(A\cap B\right)}{P\left(A\right)+P\left(B\right)}=\dfrac{P\left(A\right)+P\left(B\right)-P\left(A\cup B\right)}{P\left(A\right)+P\left(B\right)}=1-a\)
3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).
Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).
Lời giải khác:
Theo BĐT AM-GM:
\(\text{VT}=\sum \frac{\sqrt{2(b^2+c^2)-a^2}}{a}\geq \sum \frac{\sqrt{(b+c)^2-a^2}}{a}=\sum \frac{\sqrt{a+b+c}.\sqrt{b+c-a}}{a}\)
\(=\sum \frac{\sqrt{a+b+c}.(b+c-a)}{\sqrt{a^2(b+c-a)}}\)
Theo BĐT AM-GM:
$a^2(b+c-a)\leq \left(\frac{a+b+c}{3}\right)^3$
\(\Rightarrow \text{VT}\geq 3\sqrt{3}\sum \frac{\sqrt{a+b+c}(b+c-a)}{\sqrt{(a+b+c)^3}}=3\sqrt{3}.\sum \frac{b+c-a}{a+b+c}=3\sqrt{3}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Chuẩn hóa \(a+b+c=3\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên ta cũng suy ra \(0< a;b;c< \frac{3}{2}\)
Đặt vế trái là P, ta có:
\(P=\sum\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{a}\ge\sum\frac{\sqrt{\left(b+c\right)^2-a^2}}{a}=\sum\frac{\sqrt{\left(a+b+c\right)\left(b+c-a\right)}}{a}=\sqrt{3}\left(\frac{\sqrt{3-2a}}{a}+\frac{\sqrt{3-2b}}{b}+\frac{\sqrt{3-2c}}{c}\right)\)
Ta có đánh giá: \(\frac{\sqrt{3-2a}}{a}\ge3-2a\) với mọi \(a\in\left(0;\frac{3}{2}\right)\)
Thật vậy, BĐT \(\Leftrightarrow a\sqrt{3-2a}\le1\)
\(\Leftrightarrow1-a^2\left(3-2a\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Tương tự \(\frac{\sqrt{3-2b}}{b}\ge3-2b\) ; \(\frac{\sqrt{3-2c}}{c}\ge3-2c\)
\(\Rightarrow P\ge\sqrt{3}\left[9-2\left(a+b+c\right)\right]=3\sqrt{3}\) (đpcm)