K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Lời giải:

Đặt \((b+c-a, c+a-b, a+b-c)=(x,y,z)\Rightarrow (a,b,c)=(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2})\)

Tất nhiên $x,y,z>0$ vì $a,b,c$ là 3 cạnh tam giác.

Khi đó, áp dụng BĐT Cô-si cho các số dương:

\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(\geq 3\sqrt[3]{\frac{(y+z)(x+z)(x+y)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{yz}.2\sqrt{xz}.2\sqrt{xy}}{8xyz}}=3\)

Ta có đpcm

b) Vẫn cách đặt giống phần a. Áp dụng BĐT Cô-si:

\(\frac{a}{a+b-c}+\frac{b}{b+c-a}+\frac{c}{c+a-b}=\frac{y+z}{2z}+\frac{x+z}{2x}+\frac{x+y}{2y}=\frac{y}{2z}+\frac{z}{2x}+\frac{x}{2y}+\frac{3}{2}\)

\(\geq 3\sqrt[3]{\frac{y}{2z}.\frac{z}{2x}.\frac{x}{2y}}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=3\)

Ta có đpcm.

3 tháng 12 2017

Ta chứng minh được:

\(\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\right)^2\ge3\left(a^2+b^2+c^2\right)\)

Thật vậy, bđt đúng với \(\left(\dfrac{ab}{c};\dfrac{bc}{a};\dfrac{ca}{b}\right)=\left(x;y;z\right)\)

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Đẳng thức xảy ra khi x=y=z=> BĐT cần chứng minh xảy ra dấu bằng khi a=b=c

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge3\)

3 tháng 12 2017

ta có \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow1\ge\sqrt[3]{a^2b^2c^2}\)

a) theo bđt cauchy schwarz ta có

\(\dfrac{a^3b^3}{c}+\dfrac{b^3c^3}{a}+\dfrac{c^3a^3}{b}\ge3\sqrt[3]{\dfrac{a^6b^6c^6}{abc}}=3\dfrac{a^2b^2c^2}{\sqrt[3]{abc}.1}\ge3\dfrac{a^2b^2c^2}{\sqrt[3]{a^3b^3c^3}}=3abc\)

7 tháng 7 2017

Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)

\(E=\dfrac{y^2+b}{yz+b}\)

\(F=\dfrac{z^2+c}{xz+c}\)

Dự đoán: Đẳng thức xảy ra khi: D=E=F=1

Áp dụng bđt AM_GM :

||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||

\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)

\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)

*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .

Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương

\(\Rightarrow\) (*) đúng

Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)

Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z

|| kết luận viết như nào đây........||

----------------------

Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ

9 tháng 7 2017

Áp dụng BĐT AM-GM:

\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)

Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)

Áp dụng BĐT chebyshev:

\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)

hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)

Điều này đúng khi ta có thứ tự sắp biến sau:

\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)

Thật vậy, giả sử \(x\ge y\ge z\)\(a=max\left\{a,b,c\right\}\) thì điều trên đúng

P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v

16 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a+1}\ge1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}+1-\dfrac{1}{d+1}\)

\(=\dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1}\)\(\ge3\sqrt[3]{\dfrac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho 3 BĐT còn lại cũng có:

\(\dfrac{1}{1+b}\ge3\sqrt[3]{\dfrac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}};\dfrac{1}{d+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\dfrac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)

\(\Leftrightarrow1\ge81abcd\Leftrightarrow abcd\le\dfrac{1}{81}\)

5 tháng 12 2018

\(\sum\left(\dfrac{a^2}{b}\right)=\sum\left(\dfrac{a^4}{a^2b}\right)\ge\dfrac{\sum^2a^2}{\sum a^2b}\ge\dfrac{\sum^2a^2}{\sqrt{\sum a^2\cdot\sum a^2b^2}}\)

\(\Rightarrow\sum\left(\dfrac{a^2}{b}\right)\ge\dfrac{\sum^2a^2}{\sqrt{\dfrac{1}{3}\sum a^2\cdot\sum^2a^2}}=\sqrt{3\sum a^2}\)

24 tháng 1 2019

bạn tham khảo lời giải này nha, kiếm trên gg thuiChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

9 tháng 12 2017

Ta có :

\(\sqrt{\dfrac{c}{a+b}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{a}{b+c}}=\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\)Áp dụng BĐT Cauchy :

\(\Rightarrow\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2c}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2a}{a+b+c}=2\)Đấu đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\)\(\Rightarrow a+b+c=2\left(a+b+c\right)\Rightarrow1=2\) Vậy dấu đẳng thức không xảy ra

Ta phải chứng minh :

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

ta chứng minh bất đẳng thức phụ sau :

do \(\dfrac{a}{a+b}< 1\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

tương tự : \(\dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\); \(\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)

cộng ba vế BĐT lại ta có đpcm

10 tháng 12 2017

thaks bn nhìu nha