Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn qua đã biết là đề sai rồi bạn
Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )
\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )
Vậy ta có đpcm
Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1
Do giả thiết abc=1abc=1 nên
\dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc
Đặt x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc
\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz≥23.
Áp dụng BĐT Cauchy-Schwarz ta có:
\((ab+a+1)^2 \le (a+b+c) \left( a+ a^2b+ \frac 1c \right) = (a+b+c)(a+a^2b+ab)\)
\(\Rightarrow \dfrac{a}{(ab+a+1)^2} \ge \dfrac{a}{(a+b+c)(a+a^2b+ab)}= \dfrac{1}{(a+b+c)(1+ab+b)}\)
Thiết lập các BĐT tương tự rồi cộng theo vế ta có:
\(\sum \dfrac{a}{(ab+a+1)^2} \ge \dfrac{1}{a+b+c} \sum \dfrac{1}{ab+b+1}= \dfrac{1}{a+b+c}\)
c2: Áp dụng BĐT bunyakovsky:
\(\left(a+b+c\right)\left[\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right]\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\right)^2\)
Xét \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)
\(=\dfrac{ab+a+1}{ab+a+1}=1\)
do đó \(\left(a+b+c\right).VT\ge1\Leftrightarrow VT\ge\dfrac{1}{a+b+c}\)
dấu = xảy ra khi a=b=c=1
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Khi \(a=b=c=1\)
\(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)
Thay thế \(a+b+c=1\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a+b+c}{b+c}+\dfrac{a+2b+c}{a+c}+\dfrac{a+b+2c}{a+b}\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)
\(\Leftrightarrow\dfrac{2b}{a}+\dfrac{2c}{b}+\dfrac{2a}{c}\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)
\(\Leftrightarrow\left(\dfrac{2b}{a}-\dfrac{2b}{a+c}\right)+\left(\dfrac{2c}{b}-\dfrac{2c}{a+b}\right)+\left(\dfrac{2a}{c}-\dfrac{2a}{b+c}\right)\ge3\)
\(\Leftrightarrow\dfrac{2bc}{a\left(a+c\right)}+\dfrac{2ca}{b\left(a+b\right)}+\dfrac{2ab}{c\left(b+c\right)}\ge3\)
\(\Leftrightarrow\dfrac{bc}{a\left(a+c\right)}+\dfrac{ca}{b\left(a+b\right)}+\dfrac{ab}{c\left(b+c\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{2abc}\)
Chứng minh rằng \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^4b^2c^2}=2a^2bc\end{matrix}\right.\)
\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\) ( đpcm )
Vì \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)
Vậy \(\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)( đpcm )