Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0
c) (d tương tự)
\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)
và \(a+2b=5\)
--> Thế
\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)
Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)
Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.
y = 0 thì x = 1 (không thỏa pt ban đầu)
Xét y khác 0. Chia cả 2 vế của (*) cho y6:
\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)
Không khả quan lắm :)) bạn tự tìm cách khác nhé.
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)
\(\Leftrightarrow4x=100\)
\(\Leftrightarrow x=25\)
\(S=\left\{25\right\}\)
b) \(\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)
\(\Leftrightarrow x-1=8\)
\(\Leftrightarrow x=9\)
\(S=\left\{9\right\}\)
c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)
\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)
\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)
\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)
\(S=\left\{1;-1\right\}\)
d) \(\sqrt{2x-5}=x-2\)
\(\Leftrightarrow2x-5=x^2-4x+4\)
\(\Leftrightarrow-x^2+2x+4x-5-4=0\)
\(\Leftrightarrow-x^2+6x-9=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x+1=x+1\)
\(\Leftrightarrow x^2-2x-x+1-1=0\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{0;3\right\}\)
g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)
\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)
\(\Leftrightarrow x^2-9=x-3\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)
\(S=\left\{-2;3\right\}\)
h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-2+x-3-1=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
i) \(\sqrt{\frac{2x-3}{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow4\left(x-1\right)=2x-3\)
\(\Leftrightarrow4x-4-2x+3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(S=\left\{\frac{1}{2}\right\}\)
l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)
\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)
\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)
\(\Leftrightarrow y=10\)
KẾT luận : ..............
Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho
CHÚC BẠN HỌC TỐT!
m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)
<=> \(2\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}=0\) <=>x=1
Vậy \(S=\left\{1\right\}\)
n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))
<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)
<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)
<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)
<=> x+\(\left|x-1\right|=2\)(1)
TH1: \(\frac{1}{2}\le x\le1\)
Từ (1) => x+1-x=2
<=> 1=2(vô lý)
TH2: x>1
Từ (1)=> x+x-1=2
<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))
Vậy \(S=\left\{\frac{2}{3}\right\}\)
p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))
Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1
Có \(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)
<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)
<=> \(a+b=b-2\sqrt{ab}+a\)
<=> 0=\(-2\sqrt{ab}\)
=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))
Vậy \(S=\left\{2\right\}\)
q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))
Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên có:
\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)
Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)
Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))
Vậy \(S=\left\{8\right\}\)