Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017
=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)
=> K=2016+1=2017
Toán tiếng anh hả bạn
Bài này thì bạn mình có thể giải được
Thank you
* Xét tử số của K, ta nhận thấy:
Số 1 được lấy 2012 lần
Số 2 được lấy 2011 lần
Số 3 được lấy 2010 lần
........
Số 2011 được lấy 2 lần
Số 2012 được lấy 1 lần
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012
Nên \(K=1\)
\(=>\)\(K+2011=2012\)
Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!
\(K=\frac{\left(1+1+1......+1\right)+\left(2+2+.....+2\right)+......+2012}{1\times2012+2011\times2+.....+2012\times1}\)(dùng tính chất kết hợp)
\(K=\frac{1\times2012+2\times2011+.....+2012\times1}{1\times2012+2\times2011+.....+2012\times2}\)(các phép tính và số đều giống nhau)
\(K=1\)
\(K=\frac{1\times2012+2\times2011+3\times2010+...+2012\times1}{2012\times1+2011\times2+2010\times3+...+1\times2012}=1\)
xét tử số: tử số gồm có 2017 số hạng
số 1 xuất hiện 2017 lần
số 2 xuất hiện 2016 lần
số 3 xuất hiện 2015 lần
...
số 2017 xuất hiện 1 lần
=> =1.2017+2.2016+3.2015+...+2017.1
từ đó => kq = 1
\(\frac{1}{8}=12,5\%\) ; \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\)
Thay vào trên mà tính.
= \(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)
Tử số bằng mẫu số
K-2016=1
K=2017
Muốn biết tại sao tử= mẫu thì tích nha
\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)
\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)
\(K-2016=1\)
\(\Rightarrow K=1+2016\)
\(\Rightarrow K=2017\)