Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề, 2 nghiệm phân biệt nhé
Để pt có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=16-4\left(-m^2-5\right)=16+4m^2+20=4m^2+36>0\forall m\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=-m^2-5\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=16\Rightarrow x_1^2+x_2^2=16-2\left(-m^2-5\right)=2m^2+26\)
bình phương 2 hệ thức có dạng \(\left(x_1-x_2\right)^2=16\Rightarrow x_1^2+x_2^2-2x_1x_2=16\)
\(\Leftrightarrow2m^2+26-2\left(-m^2-5\right)=16\)
\(\Leftrightarrow4m^2+36=16\Leftrightarrow4m^2=-20\Leftrightarrow m^2=-5\)vô lí
Xét \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}a>0\)
Ta có: \(A^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)
Vì a>0, D>0 nên \(A=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng ta có: \(D=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{99}-\frac{1}{100}\right)=100-\frac{1}{100}=99,99\)