Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: A = 3^0 + 3^1 + 3^2 + ...+ 3^100
=> 3A = 3^1 + 3^2 + 3^3 + ...+ 3^101
=> 3A-A = 3^101 - 3^0
2A = 3^101 - 1
\(A=\frac{3^{101}-1}{2}\)
b) D = 1 - 5 + 5^2 - 5^3 + ...+ 5^98 - 5^99
=> 5D = 5 - 5^2 + 5^3 - 5^4+...+ 5^99 - 5^100
=> 5D+D = -5^100 + 1
6D = -5^100 + 1
\(D=\frac{-5^{100}+1}{6}\)
Goi tong tren la A
A = 1 + 1/2.2 + 1/3.3 +......+ 1/100.100
A < 1 + 1/1.2 + 1/2.3 + 1/3.4 +.......+ 1/99.100
A < 1 + 1 - 1/2 + 1/2 - 1/3 +.....+ 1/99 - 1/100
A < 2 - 1/2 - 1/100
A < 2 - 49/100 < 2
=> A < 2 (dpcm)
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
a)A=(-123) - 77 + (-257) +23 - 43 b)B=48+| 48-174|+(-74)
A=[(-123) - 77]+[(-257)-43]+23 B=48+(174-48)+(-74)
A= -200+(-300)+23 B=48+174+(-48)+(-74)
A= -500+23 B=[48+(-48)]+[174+(-74)]
A= -477 B=0+100=100
c)C= -2012+(-596)+(-201)+496+301 d)D=1+2-3-4+5+6-7-8+............-79-80-81
C= -2012+[(-596)+496]+[(-201)+301] D=1+(2-3-4+5)+(6-7-8+9)+............+(78-79-80-81)
C= -2010+(-100)+100 D=1+0+0+............+(-162)
C= -2010+0 D=1+(-162)
C= -2010 D= -161
nhưng xl, mk là cn gái ko pải cn trai, muốn ko, thử thj` khắc biết
\(F=2+2^2+2^3+...+2^{100}\)
\(2F=2^2+2^3+2^4+...+2^{101}\)
\(2F-F=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(F=2^{101}-2\)
Vậy...
\(E=3^0+3^1+3^2+...+3^{100}\)
\(E=1+3+3^2+...+3^{100}\)
\(3E=3+3^2+...+3^{101}\)
\(3E-3E=\left(3+3^2+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2E=3^{101}-1\)
\(E=\frac{3^{101}-1}{2}\)
Vậy...