K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Chắc pt đầu là x^2+mx+n (:))

Từ điều kiện ta có m khác p, n khác q

Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)

Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ

Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ

cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ

AH
Akai Haruma
Giáo viên
10 tháng 6 2023

Lời giải:

Để $\frac{6\sqrt{x}+2}{\sqrt{x}+2}=6-\frac{10}{\sqrt{x}+2}$ là scp thì nó phải có dạng $a^2$ (với $a\in\mathbb{N}$)

$\Leftrightarrow \frac{10}{\sqrt{x}+2}=6-a^2$

Hiển nhiên $\frac{10}{\sqrt{x}+2}>0$ nên $6-a^2>0$

$\Leftrightarrow a^2<6$. Vì $a\in\mathbb{N}$ nên $a=0,1,2$

$a=0\Leftrightarrow \frac{10}{\sqrt{x}+2}=6\Leftrightarrow \sqrt{x}=\frac{-1}{3}<0$ (loại) 

$a=1\Leftrightarrow \frac{10}{\sqrt{x}+2}=5\Leftrightarrow \sqrt{x}+2=2\Leftrightarrow x=0$

$a=2\Leftrightarrow \frac{10}{\sqrt{x}+2}=2\Leftrightarrow \sqrt{x}+2=5\Leftrightarrow x=9$