Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
Khi đó : \(\left(\frac{a+2b+3c}{3a}\right)^{2010}=\left(\frac{a+2a+3a}{3a}\right)^{2010}=\left(\frac{6a}{3a}\right)^{2010}=2^{2010}\)
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow a=b=c\)
Ta có:\(\left(\frac{a+2b+3c}{3a}\right)^{10}\)
=\(\left(\frac{a+2a+3a}{3a}\right)^{10}\)
=\(\left(\frac{6a}{3a}\right)^{10}\)
=210
=1024
a) \(P=\frac{a^2b}{c}=0\)( \(c\ne0\))
\(\Rightarrow a^2\cdot b=0\)
\(\Rightarrow a^2=0\)hoặc \(b=0\)
\(\Rightarrow a=0\)hoặc \(b=0\)và \(c\ne0\)
\(P=\frac{a^2b}{c}>0\)
Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)
\(\Rightarrow b;c\)cùng dấu
\(\Rightarrow b;c>0\)hoặc \(b;c< 0\)
\(P=\frac{a^2b}{c}< 0\)
Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)
\(\Rightarrow b;c\)khác dấu
\(\Rightarrow b< 0\)thì \(c>0\)và \(b>0\)thì \(c< 0\)
b) \(Q=\frac{x^3}{yz}=0\)( \(y;z\ne0\))
\(\Rightarrow x=0\)
\(Q=\frac{x^3}{yz}< 0\)\(\left(y;z\ne0\right)\)
Nếu \(y;z\)cùng dấu \(\Rightarrow x< 0\)
Nếu \(y;z\)khác dấu \(\Rightarrow x>0\)
\(Q=\frac{x^3}{yz}>0\left(y;z\ne0\right)\)
Nếu \(y;z\)cùng dấu \(\Rightarrow x>0\)
Nếu \(y;z\)khác dấu \(\Rightarrow x< 0\)
) �=�2��=0P=ca2b=0( �≠0c=0)
⇒�2⋅�=0⇒a2⋅b=0
⇒�2=0⇒a2=0hoặc �=0b=0
⇒�=0⇒a=0hoặc �=0b=0và �≠0c=0
�=�2��>0P=ca2b>0
Mà �2≥0a2≥0với mọi �avà �≠0c=0
⇒�;�⇒b;ccùng dấu
⇒�;�>0⇒b;c>0hoặc �;�<0b;c<0
�=�2��<0P=ca2b<0
Mà �2≥0a2≥0với mọi �avà �≠0c=0
⇒�;�⇒b;ckhác dấu
⇒�<0⇒b<0thì �>0c>0và �>0b>0thì �<0c<0
b) �=�3��=0Q=yzx3=0( �;�≠0y;z=0)
⇒�=0⇒x=0
�=�3��<0Q=yzx3<0(�;�≠0)(y;z=0)
Nếu �;�y;zcùng dấu ⇒�<0⇒x<0
Nếu �;�y;zkhác dấu ⇒�>0⇒x>0
�=�3��>0(�;�≠0)Q=yzx3>0(y;z=0)
Nếu �;�y;zcùng dấu ⇒�>0⇒x>0
Nếu �;�y;zkhác dấu ⇒�<0⇒x<0
Bạn tham khảo ở link này :
https://olm.vn/hoi-dap/detail/214647966991.html
Thay x = -1/3 vào biểu thức A,ta có :
\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)
\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)
\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)
\(-\frac{16}{27}+10=\frac{286}{27}\)
Vậy ...
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
a) \(P=\frac{a^2b}{c}\)
P = 0 khi \(a^2b=0\)
\(\Rightarrow\hept{\begin{cases}a^2=0\\b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(hai trường hợp)
P âm khi
\(\hept{\begin{cases}a^2b< 0\\c< 0\end{cases}}\)
Mà \(a^2\ge0\forall a\)
\(\Rightarrow P< 0khi\hept{\begin{cases}b< 0\\c< 0\end{cases}}\)(hai trường hợp)
P > 0 khi \(a>0;b>0;c>0\)
CÂU b) LÀM TƯƠNG TỰ NHA BẠN HOK TOT