Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu số tự nhiên lẻ có 3 chữ số ?
(D) 450 số
_Chúc bạn học tốt_
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
Câu 1
a chia b được thương là 5 dư 2
suy ra : a-2 chia hết cho b ..
suy ra : a-2+b= 42 .. suy ra a-2=37, b=5
suy ra ; 37^2=1369, 5^2=25
suy ra a^2-b^2= 1369-25=1344
vậy a^2 -b^2=1344
vì mik ko viết được số mũ nên dùng dấu^
ko biết đúng hay sai!
sai hay đúng cũng cho mik xin nha
mik có làm tắt vài bước nha ! thông cảm ... tại lười ....^-^
Hừm... Bài này hơi khó nhỉ. Tuy mình thích học Toán thật nhưng với những bài toán khó như vậy thì cần phải có thời gian suy nghĩ
mình biết bài này rồi cậu cứ suy nghĩ đi đáp án hôm sau tớ sẽ nói.