Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\perp A\)ta có:
AM là trung tuyến ứng cạnh huyền BC
=> AM=BM=CM=41
Xét \(\Delta AHM\perp H\)ta có:
\(HM^2=AM^2-AH^2\left(pytago\right)\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)
Xét \(\Delta ABH,\Delta ABC\)có:
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)
Xét \(\Delta CHA,\Delta CAB\)có:
\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{C}:chung\)
\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)
\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)
Ta có:
\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)
Vậy \(\frac{AB}{BC}=\frac{16}{25}\)
:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>
Xét t/gABC_|_ A ta có:
AM là trung tuyến ứng vs cạnh huyền BC
=>AM=BM=CM=41
Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:
HM2=AM2-AH2
=>HM2=412-402=81
=>HM=\(\sqrt{81}\)=9
Ta có:
BH=BM-HM=41-9=32
CH=CM+HM=41+9=50
Xét t/gABH và t/gABC ta có:
^ABH=^ABC=90o
=>^B chung
=>t/gABH~t/gABC(g.g)
=>BA/BH=BC/BA=>BA2=BH.BC
Xét t/gCAB và t/g CHA ta có:
^CAB=^CHA=90o
=>^C chung
=>AC/AH=BC/AC=>AC2=HC.BC
=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25
=> tỉ số hai cạnh góc AB/AC=16/25
https://h.vn/hoi-dap/question/38145.html
bạn xem ở đây nhé
a) Ta có: tam giác ABC cân tại A nên đường cao AH còn là đường trung tuyến
Suy ra: H là trung điểm của BC
BH = BC/2 = 3cm
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm
b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác
Suy ra: G thuộc đường trung tuyến kẻ từ A
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH
Vậy: A,G,H thẳng hàng
c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác
Suy ra: góc BAG = góc CAG
Xét tam giác ABG và tam giác ACG có:
AB = AC (tam giác ABC cân tại A)
góc BAG = góc CAG (cm trên)
AG chung
Vậy tam giác ABG = tam giác ACG (c-g-c)
Suy ra: góc ABG = góc ACG
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a,Xét tam giác ABM và tam giác EBM có :
AB = BE (gt)
góc B1 =góc B2(gt)
BM:cạnh chung
Suy ra tam giác ABM = tam giác EBM(c-g-c)
b,Do tam giác ABM = tam giác EBM ( cm câu a)
Suy ra AM = EM ( cặp cạnh tương ứng )
c,Do tam giác ABM = tam giác EBM ( cm câu a)
Suy ra góc BAM = góc BEM ( cặp cạnh tương ứng )
Mà góc BAM = 90 độ
Suy ra góc BEM = 90 độ
Bài làm đúng 100% đó,chúc bạn học tốt nhé!^.<
A B C H K
a,
Cách 1: Vì △ABC đều => AB = AC = BC = 5 cm
Theo tính chất △ đều thì đường cao trong △ đều chính là đường trung tuyến => HA = HC = AC : 2 = 5 : 2 = 2,5 (cm)
Xét △BHA vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> (2,5)2 + BH2 = 52 => 6,25 + BH2 = 25 => BH2 = 18,75 => BH = \(\frac{5\sqrt{3}}{2}\approx4,3\)(cm)
Cách 2: Áp dụng công thức \(h=a\frac{\sqrt{3}}{2}\) (h là đg` cao; a là chiều dài cạnh △ đều)
\(\Rightarrow BH=\frac{5\sqrt{3}}{2}\approx4,3\)(cm)
b,
A C H K B
Vì △ABC đều => ABC = ACB = BAC = 60o
Theo tính chất △ đều thì đường cao trong △ đều chính là chính là đường phân giác của góc ở đỉnh.
=> BH là phân giác ABC => ABH = HBC = ABC : 2 = 60o : 2 = 30o
Ta có: ABK + ABH = 180o (2 góc kề bù) => ABK + 30o = 180o => ABK = 150o
Và KBC + CBH = 180o (2 góc kề bù) => KBC + 30o = 180o => KBC = 150o
Lại có: AB = BK = BC = 5 cm
=> △ABK cân tại B (1) và △KBC cân tại B (2)
(1) => BKA = (180o - KBA) : 2 = (180o - 150o) : 2 = 30o : 2 = 15o
(2) => BKC = (180o - KBC) : 2 = (180o - 150o) : 2 = 30o : 2 = 15o
Ta có: AKC = BKA + BKC = 15o + 15o = 30o
Lại có: ABC + AKC = 60o + 30o = 90o