K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a) Ta có :  x - 2y = 0

=> x = 2y

Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5

= 8y2 - 2y2 - 6y2 - 4y3 + 4y+ 5

= 5

Vậy giá trị của A khi x - 2y = 0 là 5

b)Thay 11 = x - y vào biểu thức B ta có

\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)

Vậy giá trị của B khi x - y = 11 là 0

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

14 tháng 12 2019

a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)

c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)

d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)

7 tháng 1 2016

a)= \(\frac{-1}{xy}\)

b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)\(\frac{3x}{2x\left(x+3\right)}\)\(\frac{x-6}{2x\left(x+3\right)}\)\(\frac{2x+6}{2x\left(x+3\right)}\)\(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)\(\frac{1}{x}\)

c)\(\frac{1}{xy-x^2}\)\(\frac{1}{y^2-xy}\)\(\frac{1}{x\left(x-y\right)}\)\(\frac{1}{-y\left(x-y\right)}\)\(\frac{y}{xy\left(x-y\right)}\)\(\frac{-x}{xy\left(x-y\right)}\)\(\frac{y+x}{xy\left(x-y\right)}\) 

nhớ tick nhé

a) (5x - 2y) (x2 - xy + 1)

=5x^3 − 5x^2y + 5x − 2x^2y  +2xy^2 − 2y

=5x^3 − 7x^2y + 2xy^2 + 5x − 2y

b) (x - 1) (x + 1) (x + 2) 

=(x^2−1)(x+2)

=x^3+2x^2−x−2

phần c) mình ko biết nha 

a) (5x - 2y) (x2 - xy +1)

= 5x3-5x2y+5x-2x2y+2xy2+2y

= 5x3 - 7x2y+2xy2+5x+2y

b) (x - 1) (x + 1) (x + 2)

= (x\(^2\) - 1)(x + 2)

= x3 +2x2 - x - 2

c) \(\frac{1}{2}\)x2y2 (2x+y)(2x-y)

 \(\frac{1}{2}\)x2y(4x2 - y2)

= 2x4y2 -  \(\frac{1}{2}\)x2y4

9 tháng 2 2019

\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)

\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)

\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)

\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)

\(=2+24+x+2y-9\ge26+5-9=22\)

Dấu "=" xảy ra khi x = 1; y = 2

Vậy ....

9 tháng 2 2019

Mấy bài này chủ yếu là kiểm tra kĩ năng chọn điểm rơi và áp dụng BĐT AM-GM (Cô si) đúng chỗ thôi chứ có gì đâu?

28 tháng 9 2019

ko ai thèm trả lời đâu cu

28 tháng 9 2019

a) \(4x^2-6x=2x\left(2x-3\right)\)

b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)

c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)

\(=5\left(1-3x\right)\left(x+3y\right)\)

f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)

\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)