K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

\(C=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Vì \(\left|x-2017\right|\ge0;\forall x\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019;\forall x\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019};\forall x\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019};\forall x\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge\frac{2018}{2019};\forall x\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2017\right|=0\)

                     \(\Leftrightarrow x=2017\)

Vậy \(C_{min}=\frac{2018}{2019}\)\(\Leftrightarrow x=2017\)

3 tháng 2 2020

THANKS BẠN NHA

3 tháng 6 2019

\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)

\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)

\(\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}+\frac{x+4+2016}{2016}=0\)

\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)

\(\left(x+2020\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

\(\Rightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

#Sakura

3 tháng 6 2019

\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-\overrightarrow{3}\)

=>\(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)

=>\(\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)

=>\(\left(x+2020\right):\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

=>\(\left(x+2020\right)=0\)

=>\(x=0-2020\)

=>\(x=-2020\)

vậy ....

chúc bạn học tốt!

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

30 tháng 11 2015

b) để \(\left(x-7\right)^{x+2015}-\left(x-7\right)^{x+2016}=0\)

thì \(\left(x-7\right)^{x+2015}=\left(x-7\right)^{x+2016}\)

mà \(x+2015

nên \(x-7=x-7\Rightarrow x=7\)

30 tháng 11 2015

bài a)

|2x+3|=x+2

2x+3=x+2 hoặc -(2x+3)=x+2

2x-x=2-3            -2x-3=x+2

1x=-1                 -2x-x=2+3

x=-1                  -3x   =5

                           x=\(\frac{-5}{3}\)

30 tháng 11 2018

123457

1 tháng 12 2018

\(C=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=1-\frac{1}{\left|x-2017\right|+2019}\)

C nhỏ nhất => \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất 

=> |x+2017|+2019 nhỏ nhất

\(\left|x+2017\right|\ge0\Rightarrow\left|x+2017\right|+2019\ge2019\)

dấu = xảy ra khi |x+2017|=0 

=> x=-2017

Vậy MIN C=\(\frac{2018}{2019}\)

p/s: :)) có vẻ ko hoàn hảo lắm 

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12

12 tháng 12 2017

vì |x+2017|\(\ge\)0

=> |x+2017|+2018\(\ge\)2018

|x+2017|+2019\(\ge\)2019

=> GTNN của \(\dfrac{\left|x+2017\right|+2018}{\left|x+2017\right|+2019}\)=\(\dfrac{2018}{2019}\)

12 tháng 12 2017

Sai rồi bạn ơi :))

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..